Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Succinate Levels Linked to Immune Response and Inflammation

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Metabolic intermediate plays major role in alerting the immune system - measuring succinate levels may prove effective diagnostic tool in cancer.

Along the path from food to energy, intermediate molecules emerge that form the starting materials for the next step. Traditionally, these intermediates were viewed simply as building blocks — essential for the process, but otherwise inert.

But recently, a team of researchers including senior associate member Ramnik Xavier and Clary Clish, director of the Broad’s Metabolite Profiling Platform, revealed that one of these metabolic intermediates, known as succinate, plays a key role in alerting the body’s immune system — and may provide a crucial link between chronic inflammation, autoimmune disease, and cancer.

“Succinate is an important danger signal. It’s a good marker for cell stress,” said Xavier, a co-senior author of the study, recently published in Nature. The study linked high-levels of succinate to the production of an immune protein that triggers inflammation. Because succinate can be measured in blood, this finding may open the door to new diagnostics that measure immune responses.

The foundation for this discovery was laid by senior author Luke O’Neill, a professor at Trinity College in Dublin, who first observed that certain metabolic pathways in immune cells became highly active after the cells were stimulated with bacteria. The triggering of these pathways suggested the immune cells might be shifting their metabolism in a way previously thought to be exclusive to cancer cells.

One of the hallmarks of cancer cells is their ability to break down glucose at a vastly higher rate than normal cells. While most cells rely on oxygen to break down food, cancer cells can also ferment glucose — a less efficient process that does not require oxygen — to generate fuel. This metabolic shift allows them to adapt to the oxygen-deficient conditions inside tumors. The phenomenon, known as the Warburg effect, enables rapidly dividing tumor cells to generate the essential biological building blocks they need to grow. O’Neill also noted high levels of succinate in these same immune cells, and wondered what role this intermediate product might be in the metabolic shift.

Xavier, who specializes in the study of autoimmune disease, was intrigued. He offered to establish a collaborative effort with scientists at the Broad to help identify the biological circuit that might enable this metabolic shift and cause the accumulation of succinate.

Working with Xavier, Clish and the members of the Broad’s Metabolite Profiling Platform discovered that the high levels of succinate were a result of the shift and lead to an increase in the production of interleukin 1-beta, an immune protein linked to pain, inflammation, and autoimmune disease.

“Multiple studies have shown that chronic inflammation is a precursor event for several epithelial cancers,” says Xavier. “This is evidence that some of the same pathways that accelerate the progression of tumors are also operational in innate immunity.” What’s more, Xavier believes that succinate may not be the only the immune signal that plays a role in disease. Together, Xavier, Clish, and O’Neill are expanding their research to include other immune signals.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DARPA Awards $32 Million Contract to MIT, Broad Institute Foundry
A facility at the Broad Institute of MIT and Harvard and MIT that aims to achieve the full potential of engineering biology has received a five-year, $32 million contract from the Defense Advanced Research Projects Agency (DARPA).
Monday, September 28, 2015
Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
Monday, September 28, 2015
Scientists Discover New System For Human Genome Editing
CRISPR-Cpf1 system could disrupt both scientific and commercial landscape.
Monday, September 28, 2015
Researchers Develop a New Means of Killing Harmful Bacteria
Engineered particles are capable of producing toxins that are deadly to targeted bacteria.
Friday, June 26, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos