Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Protein Complex May Play Role in Preventing Many Forms of Cancer, Study Shows

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Researchers at the Stanford University School of Medicine have identified a group of proteins that are mutated in about one-fifth of all human cancers.

The finding suggests that the proteins, which are members of a protein complex that affects how DNA is packaged in cells, work to suppress the development of tumors in many types of tissues.

The broad reach of the effect of mutations in the complex, called BAF, rivals that of another well-known tumor suppressor called p53. It also furthers a growing notion that these so-called chromatin-regulatory complexes may function as much more than mere cellular housekeepers.

"Although we knew that this complex was likely to play a role in preventing cancer, we didn't realize how extensive it would be," said postdoctoral scholar Cigall Kadoch, PhD. "It's often been thought that these complexes play supportive, maintenance-like roles in the cell. But this is really changing now."

Kadoch shares lead authorship of the study with postdoctoral scholar Diana Hargreaves, PhD. Gerald Crabtree, MD, professor of developmental biology and of pathology, is the senior author of the study, published online May 5 in Nature Genetics.

Chromatin-regulatory complexes work to keep DNA tightly condensed, while also granting temporary access to certain portions for replication or to allow the expression of genes necessary for the growth or function of the cell.

Members of Crabtree's laboratory have been interested in BAF complexes and their function for many years. Recently, they reported in the journal Nature that switching subunits within these complexes can convert human fibroblasts to neurons, which points to their instructive role in development and, possibly, cancer.

"Somehow these chromatin-regulatory complexes manage to compress nearly two yards of DNA into a nucleus about one one-thousandth the size of a pinhead," said Crabtree, who is also a member of the Stanford Cancer Institute and a Howard Hughes Medical Institute investigator. "And they do this without compromising the ability of the DNA to be replicated and selectively expressed in different tissues — all without tangling. In 1994 we reported that complexes of this type were likely to be tumor suppressors. Here we show that they are mutated in nearly 20 percent of all human malignancies thus far examined."

The researchers combined biochemical experiments with the data mining of 44 pre-existing studies to come to their conclusions, which would not have been possible without the advent of highly accurate, genome-wide DNA sequencing of individual human tumor samples. Interestingly, mutations to certain subunits, or particular combinations of mutations in the complex's many subunits, seem to herald the development of specific types of cancer — favoring the development of ovarian versus colon cancer, for example.

The importance of the BAF complex as a tumor suppressor is further emphasized by the fact that, in some cases, a mutation in one subunit is sufficient to initiate cancer development.

"For example," said Kadoch, "a type of mutation called a chromosomal translocation in the gene encoding one of these newly identified subunits, SS18, is known to be the hallmark of a cancer called synovial sarcoma. It is clearly the driving oncogenic event and very often the sole genomic abnormality in these cancers." Kadoch and Crabtree published a study in March in Cell uncovering the mechanism and functional consequences of BAF complex perturbation in synovial sarcoma.

The startling prevalence of mutations in the BAF complex was discovered when Kadoch conducted a series of experiments to determine exactly which proteins in the cell were true subunits of the complex. (The exact protein composition of the large complex varies among cell types and species.) Kadoch used an antibody that recognized one core component to purify intact BAF complexes in various cell types, including embryonic stem cells and skin, nerve and other cells. She then analyzed the various proteins isolated by the technique.

Using this method, Kadoch identified seven proteins previously unknown to be BAF components. She and Hargreaves then turned to previously published studies in which the DNA from a variety of human tumors had been sequenced to determine how frequently any of the members of the complex were mutated.

The results, once the newly discovered members were included, were surprising: 19.6 percent of all human tumors displayed a mutation in at least one of the complex's subunits. In addition, for some types of cancers (such as synovial sarcoma), every individual tumor sample examined had a mutation in a BAF subunit. The results suggest that the BAF complex, when unmutated, plays an important protective role against the development of cancer in many different tissues.

The researchers are now focused on learning how the mutations affect the tumor-suppressing activity of the BAF complex.

"We certainly want to further our understanding of the mechanism behind these findings," said Hargreaves. "Do they promote cancer development by inhibiting the proper progression of the cell cycle? Or perhaps they affect how the complex is positioned on the DNA. We'd like to determine how to recapitulate some of these mutations experimentally to see what types of defects they introduce into the complex."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Drug Disarms Deadly C. difficile Bacteria Without Destroying Healthy Gut Flora
A drug that blocks the intestinal pathogen without killing resident, beneficial microbes may prove superior to antibiotics, currently the front-line treatment for the infection.
Friday, September 25, 2015
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Thursday, September 24, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
New Method for Producing Vital Cancer Drug
Stanford scientists produced a common cancer drug – previously only available from an endangered plant – in a common laboratory plant.
Tuesday, September 15, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos