Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Human Brain Cells Developed in Lab, Grow in Mice

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice.

The discovery suggests that these cells might one day be used to treat people with Parkinson’s disease, epilepsy and possibly even Alzheimer’s disease, as well as and complications of spinal cord injury such as chronic pain and spasticity.

“We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,” said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF and co-lead author on the paper.

The researchers generated and transplanted a type of human nerve-cell progenitor called the medial ganglionic eminence (MGE) cell, in experiments described in the May 2 edition of Cell Stem Cell. Development of these human MGE cells within the mouse brain mimics what occurs in human development, they said.

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types — and that may potentially be less controllable as a consequence — most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells — either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

These findings may serve as a model to study human diseases in which mature interneurons malfunction, according to Kriegstein. The researchers’ methods may also be used to generate vast numbers of human MGE cells in quantities sufficient to launch potential future clinical trials, he said.

Kriegstein was a co-leader of the research, along with Arturo Alvarez-Buylla, PhD, UCSF professor of neurological surgery; John Rubenstein, MD, PhD, UCSF professor of psychiatry; and UCSF postdoctoral scholars Cory Nicholas, PhD, and Jiadong Chen, PhD.

Nicholas utilized key growth factors and other molecules to direct the derivation and maturation of the human MGE-like interneurons. He timed the delivery of these factors to shape their developmental path and confirmed their progression along this path. Chen used electrical measurements to carefully study the physiological and firing properties of the interneurons, as well as the formation of synapses between neurons.

Potential Applications for MGE Cells

Previously, UCSF researchers led by Allan Basbaum, PhD, chair of anatomy at UCSF, have used mouse MGE cell transplantation into the mouse spinal cord to reduce neuropathic pain, a surprising application outside the brain. Kriegstein, Nicholas and colleagues now are exploring the use of human MGE cells in mouse models of neuropathic pain and spasticity, Parkinson’s disease and epilepsy.

 “The hope is that we can deliver these cells to various places within the nervous system that have been overactive and that they will functionally integrate and provide regulated inhibition,” Nicholas said.

The researchers also plan to develop MGE cells from induced pluripotent stem cells derived from skin cells of individuals with autism, epilepsy, schizophrenia and Alzheimer’s disease, in order to investigate how the development and function of interneurons might become abnormal — creating a lab-dish model of disease.

One mystery and challenge to both the clinical and pre-clinical study of human MGE cells is that they develop at a slower, human pace, reflecting an “intrinsic clock”. In fast-developing mice, the human MGE-like cells still took seven to nine months to form interneuron subtypes that normally are present near birth.

“If we could accelerate the clock in human cells, then that would be very encouraging for various applications,” Kriegstein said.

Other UCSF co-authors of the Cell Stem Cell study include Yunshuo Caroline Tang, a MD/PhD student; research specialists Nadine Chalmers and Christine Arnold; and UCSF postdoctoral fellows Daniel Vogt, PhD, and Ying-Jiun Chen, PhD.

Additional co-authors are Stanford University neurosurgery resident Derek Southwell, MD, PhD; Monash University professors of immunology and stem cell research Edouard Stanley, PhD, and Andrew Elefanty, PhD; and Yoshiki Sasai, PhD, from the RIKEN Center for Developmental Biology.

The research was funded by the California Institute of Regenerative Medicine, the National Institutes of Health, and the Osher Foundation. Arnold Kriegstein, Arturo Alvarez-Buylla, John Rubenstein, and Cory Nicholas are co-founders and shareholders of Neurona Therapeutics. An application for a patent, “In Vitro Production of Medial Ganglionic Eminence Precursor Cells,” has been filed.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Nanomedicine Aims to Improve HIV Drug Therapies
New research aims to improve the administration and availability of drug therapies to HIV patients using nanotechnology.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Driving Mosquito Evolution to Fight Malaria
Researchers propose insect repellent in conjunction with insecticides to extend current insecticide lifetime.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos