Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Brain Cells Developed in Lab, Grow in Mice

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice.

The discovery suggests that these cells might one day be used to treat people with Parkinson’s disease, epilepsy and possibly even Alzheimer’s disease, as well as and complications of spinal cord injury such as chronic pain and spasticity.

“We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,” said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF and co-lead author on the paper.

The researchers generated and transplanted a type of human nerve-cell progenitor called the medial ganglionic eminence (MGE) cell, in experiments described in the May 2 edition of Cell Stem Cell. Development of these human MGE cells within the mouse brain mimics what occurs in human development, they said.

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types — and that may potentially be less controllable as a consequence — most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells — either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

These findings may serve as a model to study human diseases in which mature interneurons malfunction, according to Kriegstein. The researchers’ methods may also be used to generate vast numbers of human MGE cells in quantities sufficient to launch potential future clinical trials, he said.

Kriegstein was a co-leader of the research, along with Arturo Alvarez-Buylla, PhD, UCSF professor of neurological surgery; John Rubenstein, MD, PhD, UCSF professor of psychiatry; and UCSF postdoctoral scholars Cory Nicholas, PhD, and Jiadong Chen, PhD.

Nicholas utilized key growth factors and other molecules to direct the derivation and maturation of the human MGE-like interneurons. He timed the delivery of these factors to shape their developmental path and confirmed their progression along this path. Chen used electrical measurements to carefully study the physiological and firing properties of the interneurons, as well as the formation of synapses between neurons.

Potential Applications for MGE Cells

Previously, UCSF researchers led by Allan Basbaum, PhD, chair of anatomy at UCSF, have used mouse MGE cell transplantation into the mouse spinal cord to reduce neuropathic pain, a surprising application outside the brain. Kriegstein, Nicholas and colleagues now are exploring the use of human MGE cells in mouse models of neuropathic pain and spasticity, Parkinson’s disease and epilepsy.

 “The hope is that we can deliver these cells to various places within the nervous system that have been overactive and that they will functionally integrate and provide regulated inhibition,” Nicholas said.

The researchers also plan to develop MGE cells from induced pluripotent stem cells derived from skin cells of individuals with autism, epilepsy, schizophrenia and Alzheimer’s disease, in order to investigate how the development and function of interneurons might become abnormal — creating a lab-dish model of disease.

One mystery and challenge to both the clinical and pre-clinical study of human MGE cells is that they develop at a slower, human pace, reflecting an “intrinsic clock”. In fast-developing mice, the human MGE-like cells still took seven to nine months to form interneuron subtypes that normally are present near birth.

“If we could accelerate the clock in human cells, then that would be very encouraging for various applications,” Kriegstein said.

Other UCSF co-authors of the Cell Stem Cell study include Yunshuo Caroline Tang, a MD/PhD student; research specialists Nadine Chalmers and Christine Arnold; and UCSF postdoctoral fellows Daniel Vogt, PhD, and Ying-Jiun Chen, PhD.

Additional co-authors are Stanford University neurosurgery resident Derek Southwell, MD, PhD; Monash University professors of immunology and stem cell research Edouard Stanley, PhD, and Andrew Elefanty, PhD; and Yoshiki Sasai, PhD, from the RIKEN Center for Developmental Biology.

The research was funded by the California Institute of Regenerative Medicine, the National Institutes of Health, and the Osher Foundation. Arnold Kriegstein, Arturo Alvarez-Buylla, John Rubenstein, and Cory Nicholas are co-founders and shareholders of Neurona Therapeutics. An application for a patent, “In Vitro Production of Medial Ganglionic Eminence Precursor Cells,” has been filed.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!