Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome Sequencing Provides Unprecedented Insight into Causes of Pneumococcal Disease

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
Technology will allow better surveillance of bacterial populations, understanding of vaccine effectiveness.

A new study led by researchers from Harvard School of Public Health (HSPH) and the Wellcome Trust Sanger Institute in the UK has, for the first time, used genome sequencing technology to track the changes in a bacterial population following the introduction of a vaccine. The study follows how the population of pneumococcal bacteria changed following the introduction of the ‘Prevnar’ conjugate polysaccharide vaccine, which substantially reduced rates of pneumococcal disease across the U.S. The work demonstrates that the technology could be used in the future to monitor the effectiveness of vaccination or antibiotic use against different species of bacterial pathogens, and for characterizing new and emerging threats.

“This gives an unprecedented insight into the bacteria living and transmitting among us,” said co-author William Hanage, associate professor of epidemiology at HSPH. “We can characterize these bugs to an almost unimaginable degree of detail, and in so doing understand better what helps them survive even in the presence of an effective vaccine.”

Pneumococcal disease is caused by a type of bacteria called Streptococcus pneumoniae, which is present in many people’s noses and throats and is spread by coughing, sneezing, or other contact with respiratory secretions. The circumstances that cause it to become pathogenic are not fully understood. Rates of pneumococcal disease—an infection that can lead to pneumonia, meningitis, and other illnesses—dropped in young children following the introduction of a vaccine in 2000. However, strains of the bacteria that are not targeted by the vaccine rapidly increased and drug resistance appears to be on the rise.

The research, led by HSPH co-senior authors Hanage; Marc Lipsitch, professor of epidemiology; and Stephen Bentley, senior scientist at the Wellcome Trust Sanger Institute, aimed to better understand the bacterial population’s response to vaccination. Whole genome sequencing—which reveals the DNA code for each bacterial strain to an unprecedented level of detail—was used to study a sample of 616 pneumococci collected in Massachusetts communities from 2001 to 2007.

This study confirmed that the parts of the bacterial population targeted by the vaccine have almost disappeared, and, surprisingly, revealed that they have been replaced by pre-existing rare types of bacteria. The genetic composition of the new population is very similar to the original one, except for a few genes that were directly affected by the vaccine. This small genetic alteration appears to be responsible for the large reduction in the rates of pneumococcal disease.

“The widespread use of whole genome sequencing will allow better surveillance of bacterial populations — even those that are genetically diverse — and improve understanding of their evolution,” said Lipsitch. “In this study, we were even able to see how quickly these bacteria transmit between different regions within Massachusetts and identify genes associated with bacteria in children of different ages.”

“In the future, we will be able to monitor evolutionary changes in real-time. If we can more quickly and precisely trace the emergence of disease-causing bacteria, we may be able to better target interventions to limit the burden of disease,” said Bentley.

Support for the study was provided by the National Institutes of Health, the Wellcome Trust, and the AXA Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Approach To Severe Bacterial Infections And Sepsis
Protein fragment could provide a defense when antibiotics fail.
Friday, July 08, 2016
Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
Monday, May 23, 2016
New Weapon Against Breast Cancer
Molecular marker in healthy tissue can predict a woman’s risk of getting the disease, research says.
Thursday, April 07, 2016
Collaboration to Develop Cancer Therapeutics
Major license agreement with Merck, enabled by Blavatnik Biomedical Accelerator, aims to develop therapy for most common form of acute leukemia.
Tuesday, March 22, 2016
Scaling Up Tissue Engineering
Wyss Institute has invented Bioprinting technique that creates thick 3D tissues composed of human stem cells and embedded vasculature, with potential applications in drug testing and regenerative medicine.
Tuesday, March 15, 2016
Into Thin Air
Lower oxygen intake could be used to prevent mitochondrial diseases from forming.
Tuesday, March 01, 2016
High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Friday, January 08, 2016
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Wednesday, January 06, 2016
Helping Cells Forget Who They Are
Erasing a cell’s memory makes it easier to manipulate them into becoming another type of cell.
Wednesday, December 23, 2015
Gut-on-a-Chip Model Offers Hope for IBD Sufferers
Wyss Institute replicates gut’s microenvironment in the lab, allowing researchers new access.
Thursday, December 17, 2015
Cell Memory Loss Enables the Production of Stem Cells
Scientists identify a molecular key that helps maintain identity and prevents the conversion of adult cells into iPS cells.
Thursday, December 17, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!