Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cell Therapy Promise Highlighted at UCSF Symposium

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
Old-line pharmaceutical companies and maturing biotech businesses both are graybeards compared to newer ventures focused on cell therapy.

With cell therapy the drugs are alive. Cells are engineered and reprogrammed outside the body to perform specific tasks – and then given as treatment.

“Cells are like soft robots,” said Wendell Lim, PhD, director of the Center for Systems & Synthetic Biology at UC San Francisco and an organizer “Cell-Based Therapeutics: The Next Pillar of Medicine,” a daylong symposium held at UCSF’s Mission Bay campus last month.

Lim and other scientists aim to take advantage of the modules that already function within cells, and to manipulate them for specific therapeutic goals – sometimes by introducing new functions.

“We want to build therapeutic cells with precisely controlled activities,” Lim said. “We want to control how cells proliferate, where they go, how they are activated and how to turn them off or even destroy them when they are no longer needed.”

No small-molecule drug or genetically engineered biologic therapy can accomplish these tasks as well, according to Lim.

The April 12 symposium gathered together some of the nation’s leading scientists to share success stories and to focus on the medical horizons for stem cells, bacterial therapies and engineered immune cells.

Thanks to some of the first cell therapies studied in clinical trials, children and adults have been saved from leukemia after other drugs failed them, people have recovered from life-threatening Clostridium difficile bacterial infection that paradoxically can be triggered by antibiotic use, and remarkably, a few individuals paralyzed with spinal cord injury have regained a modest degree of sensation.

It’s still early days for cell therapy research and its applications.

“We need to demonstrate that cell therapy is a viable product,” UCSF Executive Vice Chancellor and Provost Jeffrey Bluestone, PhD, said in kicking off the symposium.

Revenues generated by cell-based therapies barely exceed $5 billion annually, including conventional therapies such as bone marrow transplantation – an amount Bluestone called “small potatoes.”

For major chronic disease, cell therapies that only need to be administered once could save both lives and money, he added.

The following sessions highlighted some of the key areas in cell-based therapeutics:

Immunotherapy in Cancer, Diabetes and Organ Transplantation

Cancers arise from our own tissues, so the immune system cannot easily recognize tumor cells as abnormal invaders.

Symposium speaker Carl June, MD, professor of immunotherapy at the University of Pennsylvania, described how he and his colleagues have rejiggered the workhorse cell of the immune system – called the killer T cell – to make it more effective at targeting cancer.

Fewer than two-dozen clinical trial participants with advanced forms of leukemia have been treated to date, and follow-up for most has been less than a year.

Still, the results have been remarkable for patients expected to die after they had run through the standard chemotherapy treatment options. Most have had complete remissions – meaning cancer can no longer be detected within them.

Some of the youngest patients had a very aggressive type of acute lymphoblastic leukemia (ALL) – “normally a death sentence,” June said. But with the new immunotherapy, “four out of five children treated to date have had complete remissions,” he said.

The treatment works fast. In one girl, Emily Whitehead, who entered the study at age 6 and who now is one year beyond receiving the therapy, “One kilogram of tumor disappeared in 17 days,” June said. “The T cells did it all.”

And the T cells that do it live on within the patients.

Additional patients are being enrolled in leukemia clinical trials at Penn and other academic medical centers, and June described success in treating adults with leukemia too.

“Every one of these [treatments] came from an academic center with no involvement of the biotechnology industry,” June said. Success spurs interest, however, and Novartis and Penn established an alliance last December in which Novartis will sponsor further development of the therapy.

Bluestone works with a different type of T cell and strives to prevent immune reactions, rather than to rev them up. He’s developing immunotherapies to fight organ-transplant rejection, as well as diseases such as type-1 diabetes, in which the immune system attacks specific vital tissues.

Bluestone focuses on regulatory T cells – master cells within the immune system that put a damper on these autoimmune responses. They are a very small population of cells that emerge from the thymus, which makes all T cells.

Working with UCSF pediatric diabetes expert Stephen Gitelman, MD, and UCSF transplant immunologist Qizhi Tang, PhD, Bluestone has isolated and purified a population of T regulatory cells and expanded their numbers 1,000-fold in 10 days. In an effort to halt destruction of the pancreas, the researchers are enrolling patients in a Phase 1 clinical trial for adults ages 18 to 45 who have been recently diagnosed with type 1 diabetes and who still make some insulin.

“We now have the proof of principal that we can take these cells out of somebody, we can grow them up, put them back in, and they will survive long term,” Bluestone said. “We don’t know about their clinical efficacy yet.”

Lim, an expert in breaking down and putting back together the molecular modules within cells, like Bluestone and June, aims to develop the next generation of immunotherapies. He is experimenting with drugs and light exposure as a means of controlling the activation of cells used in treatment.

Bacterial Cells 'Best Chemists on the Planet'

Bacteria that make us their home outnumber our own cells 10-fold, and their genes outnumber ours by about 100-fold.

Researchers are exploring how microbial ecosystems within and upon us – and the thousands of species they contain — influence whether we are sick or well.

People differ in the combinations of bacteria they normally harbor. Some patterns have recently been associated with obesity and diabetes risk. But individual culprits, let alone remedies for undesirable bacteria, are hard to pin down. Many species present naturally do no harm unless they are given an opportunity to overgrow.

So far, there is little scientific research to support most marketing claims for “probiotic” supplements sold as good bacteria that can aid digestion or keep bad bacteria at bay. But researchers ultimately aim to develop scientifically proven, precisely targeted bacterial therapies to help prevent or remedy acute and chronic illnesses in which alterations to an individual’s healthy “microbiome” are implicated.

Antibiotics may vanquish their microbial target, but prime the gut for other pathogens in the process, said symposium speaker Justin Sonnenburg, PhD, of the Department of Microbiology and Immunology at Stanford University, whose work centers on germ-free mice that he colonized with bacteria in the lab.

“In the intestine, resources are kept at incredibly low levels because it is such a competitive environment, and as soon as you disrupt this really competitive ecosystem with antibiotics you allow a lot of these resources to build up to abnormally high levels that pathogens capitalize on,” he said. The pathogens trigger inflammation, and this chronic immune response holds healthy bacteria back, allowing troublesome pathogens to establish a niche.

In a talk titled “Nose Picking for Progress,” Katherine Lemon, MD, PhD, of the Forsyth Institute and Boston Children’s Hospital, described mining for strains of bacteria with potential to treat chronic afflictions such as asthma and sinus infection, including bacteria that help keep staph infection at bay. Lemon is one of 250 member of the Human Microbiome Project consortium, which recently determined that there are 10,000 microbial species that live in humans –  although not all of them live in any individual human.

“Bacterial cells are the best chemists on the planet,” and already carry out a lot of chemistry for our benefit, said symposium co-organizer Michael Fischbach, PhD, assistant professor in the Department of Bioengineering and Therapeutic Sciences at UCSF.

Most antibiotics derive form fungi and other organisms in nature, but Fischbach described research in which he uses genomics and bioinformatics to discover many natural antibiotics with therapeutic potential in previously unexamined gut microbes.

Stem Cell Therapy to Regenerate Tissue

A third class of cell therapies that was featured at the UCSF symposium is stem cell treatment to regenerate tissue that has been damaged or lost due to disease or injury.

Stem cell treatments are making their way into human studies after more than a decade of development.

Fan Yang, PhD, assistant professor Bioengineering and Orthopaedic Surgery at Stanford University, described her research aimed at manipulating biomaterials and the cellular microenvironment within tissues to direct the functions of cells that are spun off from stem cells.

Ann Tsukamoto, PhD, executive vice president for research and development at Stem Cells Inc. of Newark, Calif. described groundbreaking clinical trials for stem cell treatments of the central nervous system. Tsukamoto managed the second neural stem cell clinical trial ever conducted in the United States – and the first with published results. The adult nerve stem cells used by Stem Cells Inc. are not modified.

Tsukamoto first described a clinical trial, conducted at UCSF by neurosurgeon David Rowitch, MD, PhD, with young children who have a rare, fatal form of Pelizaeus-Merzbacher disease that results in failure to produce the insulating sheath, called myelin, required by nerves. Myelin also is lost in multiple sclerosis.

Children who received transplants grew myelin, and their disease progressed more slowly, she said.

Tsukamoto also described interim results from three spinal cord injury patients a year after nerve stem cell transplants in an ongoing Swiss clinical trial. Patients have improved nerve signaling and regained some touch sensation, with no ill effects.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Rates of Nonmedical Prescription Opioid Use Disorder Double in 10 Years
Researchers at NIH have found that the nonmedical use of prescription opioids has more than doubled among adults in the United States from 2001-2002 to 2012-2013.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!