Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

microRNA Cooperation Mutes Breast Cancer Oncogenes

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
Turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot – and without the unwanted side effects.

It’s a bit like the classic thought experiment known as the “tumor problem” formulated by Karl Dunker in 1945 and used frequently in the problem-solving literature: Imagine a person suffers from a malignant tumor in the center of her body. Radiation strong enough to kill the tumor kills any healthy tissue through which it passes. Without operating or killing healthy tissue, how can a doctor use radiation to kill the tumor?

The answer is to target the tumor from many angles – many weak rays of radiation pass harmlessly through healthy tissue, but their combined power at the point of the tumor is enough to kill it.

In the present study, CU Cancer Center investigators used “weak” induction of multiple microRNAs that combined from many angles to regulate the known breast cancer oncogenes erbB2/erbB3 (the “tumor”) without regulating non-target genes (the “healthy tissue”).

“Imagine you have a microRNA that regulates genes A and B. Then you have another microRNA that regulates genes B and C. You amplify each microRNA to a degree that doesn’t effect gene A or C, but their combined effect regulates gene B,” says Bolin Liu, MD, assistant professor in the Department of Pathology at the University of Colorado School of Medicine.

microRNA is an attractive target in cancer therapy – more microRNA can lead to less gene expression, turning down or off the oncogenes that cause cancer. However, to get the desired effect on gene expression frequently requires enhancing microRNA expression 100- or 1,000-fold (or more). And the induced microRNA likely has other genetic targets – it will turn down other genes as well as the oncogene, sometimes with unfortunate consequences.

“The current study showed that two microRNAs enhanced only 3-to-6 times their natural expression could cooperate to regulate an oncogene that had previously only been affected by a microRNA enhanced by many, many times this amount,” Liu says.

Specifically, the group’s work shows that no one alone, but any two of the three microRNAs that regulate erbB2/erbB3 expression can affect the levels of proteins produced by the genes. These are miR-125a, miR-15b, and miR-205, which act in concert to regulate the expression of erbB2/erbB3, which are cancer-causing products of the oncogenes.

But in general, the group’s novel technique could have implications far past erbB2/erbB3, allowing researchers and eventually doctors to mute the genes they want to mute without also dampening the expression of genes regulated by only one or only the other microRNA partner.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reprogramming Stem Cells May Prevent Cancer After Radiation
Study published in the journal Stem Cells.
Tuesday, January 06, 2015
Epigenomic Abnormalities Predict Patient Survival in Non-Hodgkins Lymphoma
University of Colorado Cancer Center looks into how epigenetics could be used to control cancer.
Wednesday, January 16, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Promising Drug Combination for Advanced Prostate Cancer
A new drug combination may be effective in treating men with metastatic prostate cancer. Preliminary results of this new approach are encouraging and have led to an ongoing international study being conducted in 196 hospitals worldwide.
A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Editing of LIMS Data Made Faster and More Efficient in Matrix Gemini
The latest version of the Matrix Gemini LIMS (Laboratory Information Management System) from Autoscribe Informatics now provides faster and more efficient editing of LIMS data by eliminating the need for a second editing screen.
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Red Clover Genome to Help Restore Sustainable Farming
The Genome Analysis Centre (TGAC) in collaboration with IBERS, has sequenced and assembled the DNA of red clover to help breeders improve the beneficial traits of this important forage crop.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos