Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Cautionary Tale on Genome-Sequencing Diagnostics for Rare Diseases

Published: Tuesday, May 14, 2013
Last Updated: Tuesday, May 14, 2013
Bookmark and Share
Studies in several children have raising new questions about inheritance, genomic sequencing, and diagnostic.

Children born with rare, inherited conditions known as Congenital Disorders of Glycosylation, or CDG, have mutations in one of the many enzymes the body uses to decorate its proteins and cells with sugars. Properly diagnosing a child with CDG and pinpointing the exact sugar gene that's mutated can be a huge relief for parents—they better understand what they're dealing with and doctors can sometimes use that information to develop a therapeutic approach. Whole-exome sequencing, an abbreviated form of whole-genome sequencing, is increasingly used as a diagnostic for CDG.

But researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently discovered three children with CDG who are mosaics—only some cells in some tissues have the mutation. For that reason, standard exome sequencing initially missed their mutations, highlighting the technique's diagnostic limitations in some rare cases. These findings were published April 4 in the American Journal of Human Genetics.

"This study was one surprise after another," said Hudson Freeze, Ph.D., director of Sanford-Burnham's Genetic Disease Program and senior author of the study. "What we learned is that you have to be careful—you can't simply trust that you'll get all the answers from gene sequencing alone."

Searching for a rare disease mutation

Complicated arrangements of sugar molecules decorate almost every protein and cell in the body. These sugars are crucial for cellular growth, communication, and many other processes. As a result of a mutation in an enzyme that assembles these sugars, children with CDG experience a wide variety of symptoms, including intellectual disability, digestive problems, seizures, and low blood sugar.

To diagnose CDG, researchers will test the sugar arrangements on a common protein called transferrin. Increasingly, they'll also look for known CDG-related mutations by whole-exome sequencing, a technique that sequences only the small portion of the genome that encodes proteins. The patients are typically three to five years old.

A cautionary tale for genomic diagnostics

In this study, the researchers observed different proportions and representations of sugar arrangements depending on which tissues were examined. In other words, these children have the first demonstrated cases of CDG "mosaicism"—their mutations only appear in some cell types throughout the body, not all. As a result, the usual diagnostic tests, like whole-exome sequencing, missed the mutations. It was only when Freeze's team took a closer look, examining proteins by hand using biochemical methods, did they identify the CDG mutations in these three children.

The team then went back to the three original children and examined their transferrin again. Surprisingly, these readings, which had previously shown abnormalities, had become normal. Freeze and his team believe this is because mutated cells in the children's livers died and were replaced by normal cells over time.

"If the transferrin test hadn't been performed early on for these children, we never would've picked up these cases of CDG. We got lucky in this case, but it just shows that we can't rely on any one test by itself in isolation," Freeze said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sanford-Burnham to Partner with Pfizer
The collaboration will see the organisations identify new therapeutic targets for preventing and treating complications of obesity and diabetes.
Tuesday, August 20, 2013
“Junk DNA” Drives Embryonic Development
An embryo is an amazing thing. From just one initial cell, an entire living, breathing body emerges, full of working cells and organs.
Thursday, December 06, 2012
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!