Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Secret of Efficient Photosynthesis is Decoded

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
MIT researchers find that the key to purple bacteria’s light-harvesting prowess lies in highly symmetrical molecules.

Purple bacteria are among Earth’s oldest organisms, and among its most efficient in turning sunlight into usable chemical energy. Now, a key to their light-harvesting prowess has been explained through a detailed structural analysis by scientists at MIT.

A ring-shaped molecule with an unusual ninefold symmetry is critical, the researchers found. The circular symmetry accounts for its efficiency in converting sunlight, and for its mechanical durability and strength. The new analysis, carried out by professors of chemistry Jianshu Cao and the late Robert Silbey, postdoc Liam Cleary, and graduate students Hang Chen and Chern Chuang, has been published in the Proceedings of the National Academy of Sciences.

“The symmetry makes the energy transfer much more robust,” Cao says. “Most biological systems are quite soft and disordered. You would not expect a regular structure, almost a perfect structure,” as is found in this primitive microbe, he says.

In these regular round complexes, Cao says, “nature only used certain symmetry numbers: mostly ninefold, some eightfold, very few tenfold. It’s very selective.” His group’s mathematical analysis shows there are good reasons for that, he says.

These ring-shaped molecules, in turn, are arranged in a hexagonal pattern on the spherical photosynthetic membrane of purple bacteria, Cao says.

“With these symmetry numbers, the interactions between all pairs of the symmetric rings are optimized at the same time. … We believe that nature found the most robust structures in terms of energy transfer,” Cao says. Both eightfold and tenfold symmetries also work, though not as well: Only a lattice made up of ninefold symmetric complexes can tolerate an error in either direction. “You want consecutive numbers so it can tolerate such mistakes,” Cao says.

The molecular system in question, called light-harvesting complex 2 (LH2), operates in waterborne organisms that do not produce oxygen; such species consume sulfides, often found in volcanic hot springs or in deep-sea hydrothermal vents. LH2 molecules release energy when struck by photons; that energy is then stored as molecules of ATP that can later be used as fuel for metabolism.

The structure of LH2 complexes had previously been determined by other groups, Cao explains. “What we provide is an explanation of why nature selected such a structure,” he says. “What is the advantage compared to other possible structures?”

Now that the reasons for this molecule’s efficiency in harvesting light have been deciphered, Cao says, researchers can take advantage of its symmetries to create synthetic systems for harvesting solar energy. “We can design large molecules, with similar high-symmetry motifs, that can facilitate energy transfer,” he says.

The new analysis showed how the hexagonal arrangement of molecules on the bacteria’s membrane surface enhanced their performance by matching the ninefold symmetry of LH2. “Most of the focus in the past has been on the individual molecules,” Cao says, adding, “We are taking this lesson we learned from nature to explore design principles. If I want to design a superlattice of nanotubes or nanowires, what is the best internal structure and what is the best crystal order? We consider symmetry matching in the context of the larger structure.”

While this research focused on a specific type of light-harvesting molecule, the underlying principles of energy-transfer efficiency may be applicable to charge transfer, heat transport and other processes, Cao says.

Stuart Rice, a professor of chemistry at the University of Chicago, says this work is “an inspired analysis and prediction for synthetic materials that is itself inspired by a biological process and system. I have not ever before seen the question of the relationship between energy-transfer efficiency and complexity of packing treated as in this paper. … This is a brilliant analysis that should find immediate acceptance.”

Rice adds that this research “opens the door to a new way of designing efficient synthetic photosensitive devices, by coupling internal structure to packing in a fashion that is not now involved in the design process.”

The research was supported by the National Science Foundation; the Defense Advanced Research Projects Agency; and the MIT Center for Excitonics, funded by the Department of Energy.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Friday, January 29, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!