Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Secret of Efficient Photosynthesis is Decoded

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
MIT researchers find that the key to purple bacteria’s light-harvesting prowess lies in highly symmetrical molecules.

Purple bacteria are among Earth’s oldest organisms, and among its most efficient in turning sunlight into usable chemical energy. Now, a key to their light-harvesting prowess has been explained through a detailed structural analysis by scientists at MIT.

A ring-shaped molecule with an unusual ninefold symmetry is critical, the researchers found. The circular symmetry accounts for its efficiency in converting sunlight, and for its mechanical durability and strength. The new analysis, carried out by professors of chemistry Jianshu Cao and the late Robert Silbey, postdoc Liam Cleary, and graduate students Hang Chen and Chern Chuang, has been published in the Proceedings of the National Academy of Sciences.

“The symmetry makes the energy transfer much more robust,” Cao says. “Most biological systems are quite soft and disordered. You would not expect a regular structure, almost a perfect structure,” as is found in this primitive microbe, he says.

In these regular round complexes, Cao says, “nature only used certain symmetry numbers: mostly ninefold, some eightfold, very few tenfold. It’s very selective.” His group’s mathematical analysis shows there are good reasons for that, he says.

These ring-shaped molecules, in turn, are arranged in a hexagonal pattern on the spherical photosynthetic membrane of purple bacteria, Cao says.

“With these symmetry numbers, the interactions between all pairs of the symmetric rings are optimized at the same time. … We believe that nature found the most robust structures in terms of energy transfer,” Cao says. Both eightfold and tenfold symmetries also work, though not as well: Only a lattice made up of ninefold symmetric complexes can tolerate an error in either direction. “You want consecutive numbers so it can tolerate such mistakes,” Cao says.

The molecular system in question, called light-harvesting complex 2 (LH2), operates in waterborne organisms that do not produce oxygen; such species consume sulfides, often found in volcanic hot springs or in deep-sea hydrothermal vents. LH2 molecules release energy when struck by photons; that energy is then stored as molecules of ATP that can later be used as fuel for metabolism.

The structure of LH2 complexes had previously been determined by other groups, Cao explains. “What we provide is an explanation of why nature selected such a structure,” he says. “What is the advantage compared to other possible structures?”

Now that the reasons for this molecule’s efficiency in harvesting light have been deciphered, Cao says, researchers can take advantage of its symmetries to create synthetic systems for harvesting solar energy. “We can design large molecules, with similar high-symmetry motifs, that can facilitate energy transfer,” he says.

The new analysis showed how the hexagonal arrangement of molecules on the bacteria’s membrane surface enhanced their performance by matching the ninefold symmetry of LH2. “Most of the focus in the past has been on the individual molecules,” Cao says, adding, “We are taking this lesson we learned from nature to explore design principles. If I want to design a superlattice of nanotubes or nanowires, what is the best internal structure and what is the best crystal order? We consider symmetry matching in the context of the larger structure.”

While this research focused on a specific type of light-harvesting molecule, the underlying principles of energy-transfer efficiency may be applicable to charge transfer, heat transport and other processes, Cao says.

Stuart Rice, a professor of chemistry at the University of Chicago, says this work is “an inspired analysis and prediction for synthetic materials that is itself inspired by a biological process and system. I have not ever before seen the question of the relationship between energy-transfer efficiency and complexity of packing treated as in this paper. … This is a brilliant analysis that should find immediate acceptance.”

Rice adds that this research “opens the door to a new way of designing efficient synthetic photosensitive devices, by coupling internal structure to packing in a fashion that is not now involved in the design process.”

The research was supported by the National Science Foundation; the Defense Advanced Research Projects Agency; and the MIT Center for Excitonics, funded by the Department of Energy.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Monday, August 17, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos