Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Osteoarthritis Progression Halted in Mice

Published: Tuesday, May 21, 2013
Last Updated: Tuesday, May 21, 2013
Bookmark and Share
If successful in humans, joint replacement surgery might be avoidable.

Scientists at Johns Hopkins have turned their view of osteoarthritis (OA) inside out. Literally. Instead of seeing the painful degenerative disease as a problem primarily of the cartilage that cushions joints, they now have evidence that the bone underneath the cartilage is also a key player and exacerbates the damage. In a proof-of-concept experiment, they found that blocking the action of a critical bone regulation protein in mice halts progression of the disease.

The prevailing theory on the development of OA focuses on joint cartilage, suggesting that unstable mechanical pressure on the joints leads to more and more harm to the cartilage—and pain to the patient—until the only treatment option left is total knee or hip replacement. The new theory, reported May 19 in Nature Medicine, suggests that initial harm to the cartilage causes the bone underneath it to behave improperly by building surplus bone. The extra bone stretches the cartilage above and speeds its decline.

“If there is something wrong with the leg of your chair and you try to fix it by replacing the cushion, you haven’t solved the problem,” says Xu Cao, Ph.D., director of the Center for Musculoskeletal Research in the Department of Orthopaedic Surgery at the Johns Hopkins University School of Medicine. “We think that the problem in OA is not just the cartilage ‘cushion,’ but the bone underneath,” he adds.

Joints are formed at the intersection of two bones. To prevent the grinding and wearing down of the ends of the bones, they are capped with a thin layer of cartilage, which not only provides a smooth surface for joint rotation but also absorbs some of the weight and mechanical strain placed on the joint. The degeneration of this protective layer causes extreme pain leading to limited mobility.

Cao says degeneration is most frequently initiated by instability in the load-bearing joints of the knee and hip caused by injury or strain, so athletes, overweight people and people whose muscles are weakened by aging are at highest risk of developing OA. The prevalence of the disease is rapidly increasing; it currently affects 27 million Americans and may double by 2030. The only treatment available is pain management, or surgical replacement of the arthritic joint with a prosthetic one.

Cao says that the lack of effective drugs or a complete understanding of the underlying process that causes OA to progress led his group to search for a different underlying cause. “We began to think of cartilage and the bone underneath it, called subchondral bone, as functioning as a single unit,” says Cao. “That helped us to see the ways in which the bone was responding to changes in the cartilage and exacerbating the problem.”

Using mice with ACL (anterior cruciate ligament) tears, which are known to lead to OA of the knee, the researchers found that, as soon as one week after the injury, pockets of subchondral bone had been “chewed” away by cells called osteoclasts. This process activated high levels in the bone of a protein called TGF-beta1, which, in turn, recruited stem cells to the site so that they could create new bone to fill the holes. Cao calls these pockets of new bone formation “osteoid islets.”

But the bone building and the bone destruction processes were not coordinated in the mice, and the bone building prevailed, placing further strain on the cartilage cap. It is this extraneous bone formation that Cao and his colleagues believe to be at the heart of OA, as confirmed in a computer simulation of the human knee.

With this new hypothesis in hand, complete with a protein suspect, the team tried several methods to block the activity of TGF-beta1. When a TGF-beta1 inhibitor drug was given intravenously, the subchondral bone improved significantly, but the cartilage cap deteriorated further. However, when a different inhibitor of TGF-beta1, an antibody against it, was injected directly into the subchondral bone, the positive effects were seen in the bone without the negative effects on the cartilage. The same result was also seen when TGF-beta1 was genetically disrupted in the bone precursor cells alone.

“Our results are potentially really good news for patients with OA,” says Cao. “We are already working to develop a clinical trial to test the efficacy of locally applied TGF-beta1 antibodies in human patients at early stages of OA.” If successful, their nonsurgical treatment could make OA — and the pain and debilitation it causes — halt in its tracks, he says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering the Genetics Behind High Blood Pressure
Results suggest a role for blood vessels themselves in controlling blood pressure.
Wednesday, September 14, 2016
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Tuesday, October 13, 2015
Paternal Sperm May Hold Clues to Autism
Tags on DNA from fathers’ sperm linked to children’s autism symptoms.
Friday, April 17, 2015
New Autism-Causing Genetic Variant Identified
Novel approach expected to be useful for other diseases too.
Saturday, March 28, 2015
Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Enzyme's Alter Ego Helps Activate the Immune System
Findings could shed light on related Alzheimer's protein.
Tuesday, January 06, 2015
Researchers Tease Out Glitches in Immune System's Self-Recognition
A new study revises understanding of how the process works and sheds light on autoimmune disease.
Saturday, November 22, 2014
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Researchers Use Human Stem Cells to Create Light-Sensitive Retina in a Dish
Johns Hopkins researchers have created a 3-D complement of human retinal tissue in the laboratory.
Saturday, June 14, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.
Monday, November 11, 2013
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
New Testing Strategy Detects Population-Wide Vitamin and Mineral Deficiencies
Could speed mass intervention in developing countries.
Wednesday, October 30, 2013
Stem Cells may do Best with a Little Help from their Friends
“Helper cells” improve survival rate of transplanted stem cells, mouse study finds.
Wednesday, September 11, 2013
Molecular Marker Predicts Patients Most Likely to Benefit Longest From Two Popular Cancer Drugs
Preliminary study needs further confirmation.
Wednesday, September 11, 2013
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!