Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Infection Makes Mosquitoes Immune to Malaria Parasites

Published: Thursday, May 23, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
Study highlights the potential of using Wolbachia in malaria control.

Researchers established a bacterial infection in mosquitoes that helps fight the parasites that cause malaria. The infected insects could be a significant tool for malaria control.

Malaria is caused by a single-cell parasite called Plasmodium. The parasite infects female mosquitoes when they feed on the blood of an infected person.

Once in the mosquito’s midgut, the parasites multiply and migrate to the salivary glands, ready to infect a new person when the mosquito next bites.

Malaria remains one of the most common infectious diseases in the world. It kills hundreds of thousands each year, mostly young children in sub-Saharan Africa.

Treating bed nets and indoor walls with insecticides is the main prevention strategy in developing countries.

However, the mosquitoes that transmit malaria are slowly becoming resistant to these chemicals, creating an urgent need for new approaches.

Wolbachia is a naturally occurring bacterium that was previously found to block development of Plasmodium parasites in mosquitoes. Wolbachia can be transmitted by an infected female insect to her offspring.

Uninfected females that mate with infected males rarely produce viable eggs-a reproductive dead end that gives infected females a reproductive advantage and helps the bacteria spread quickly.

Wolbachia were successfully used in a field trial to control dengue, another mosquito-borne disease. However, the bacteria don’t pass consistently from a mother to her offspring in Anopheles mosquitoes, which spread malaria.

A team led by Dr. Zhiyong Xi at Michigan State University set out to establish a stable, inherited Wolbachia infection that could block Plasmodium growth in Anopheles.

They focused on Anopheles stephensi, the primary malaria carrier in the Middle East and South Asia.

Their work was funded in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID). Results appeared on May 10, 2013, in Science.

The researchers injected a strain of Wolbachia derived from another type of mosquito into A. stephensi embryos.

Once matured, the adult females mated with uninfected male mosquitoes to create a stable Wolbachia infection that persisted for 34 generations (the end of the study period).

Uninfected females rarely produced viable eggs with infected males.

To see how well the infected mosquitoes could invade an uninfected A. stephensi population, the researchers tested groups of insects in the laboratory.

When infected females comprised as little as 5% of the population, all the mosquitoes became infected with Wolbachia within 8 generations.

The researchers found that Wolbachia infection reduced the number of malaria parasites in both the mosquito midgut and salivary glands. They hypothesize that Wolbachia infection causes the formation of unstable compounds known as reactive oxygen species, which inhibit parasite development.

This study highlights the potential of using Wolbachia in malaria control. “Wolbachia-based malaria control strategy has been discussed for the last 2 decades,” Xi says.

Xi continued, “Our work is the first to demonstrate Wolbachia can be stably established in a key malaria vector, the mosquito species Anopheles stephensi, which opens the door to use Wolbachia for malaria control.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos