Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Researchers Conduct First Genomic Survey of Human Skin Fungal Diversity

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
Location on the body surface determines fungal composition with the greatest diversity on feet.

While humans have harnessed the power of yeast to ferment bread and beer, the function of yeast or other types of fungi that live in and on the human body is not well understood. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi at skin sites of healthy adults to define the normal populations across the skin and to provide a framework for investigating fungal skin conditions.

Human skin surfaces are complex ecosystems for microorganisms, including fungi, bacteria and viruses, which are known collectively as the skin microbiome. Although fungal infections of the skin affect about 29 million people in the United States, fungi can be slow and hard to grow in laboratories, complicating diagnosis and treatment of even the most common fungal skin conditions, such as toenail infections.

The research team from the National Human Genome Research Institute (NHGRI) and the National Cancer Institute (NCI), both parts of NIH, extended their recent genome sequencing study of skin bacteria, using DNA sequencing techniques optimized for identifying fungi. The study appears in the May 22, 2013 early online issue of Nature.

The researchers found that a single type of fungus, belonging to the genus Malassezia, is predominant on the head and trunk. Hands, which harbor a great diversity of bacteria, are home for relatively few types of fungi. In contrast, feet, including toenails, heels and toe webs contain tremendous diversity.

“Applying DNA sequencing to a study of the skin’s fungi is the natural progression in understanding microbial life that co-exists on our bodies,” said NHGRI Scientific Director Daniel Kastner, M.D., Ph.D. “Along with recent genome sequencing to define bacterial diversity, this analysis of fungal diversity provides a more complete human microbiome picture.”

“Fungal communities occupy complex niches, even on the human body,” said Heidi Kong, M.D., co-senior author and an investigator in the dermatology branch of NCI’s Center for Cancer Research. “By gaining a more complete awareness of the fungal and bacterial ecosystems, we can better address associated skin diseases, including skin conditions which can be related to cancer treatments.”

The researchers collected samples at 14 body sites from 10 healthy adults. DNA sequencing of the fungi in the samples identified fragments of DNA, called phylogenetic markers, which can be counted and used to distinguish one type of fungus from another. The sequencing efforts generated more than 5 million markers, from the samples, representing more than 80 fungal types, or genera. In contrast, traditional culturing methods produced 130 colonies of fungi that represented only 18 fungal genera.

In 20 percent of the study participants, the researchers observed problems such as heel and toe web scaling or toenail changes consistent with possible fungal infections. From genome sequencing analysis, the researchers found that different individuals with heel site infections have common fungal communities at that site, while those with toenail infections display tremendously different fungal communities.

“DNA sequencing reveals the great diversity of fungi, even those that are hard to grow in culture,” said Julie Segre, Ph.D., co-senior author and senior investigator, NHGRI Genetics and Molecular Biology Branch. Her expertise is the development of microbial DNA sequencing technology. “DNA sequencing enabled us to learn immeasurably more about where fungi predominate as a part of the human skin microbiome.”

The researchers identified fungi from two phyla, Ascomycetes and Basidiomycetes, as part of the normal fungal census at the 14 skin sites. The most common genus Malassezia was present in 11 of 14 sites sampled on the body. The researchers found Malassezia fungus on every skin surface of healthy volunteers, whether on the back of the head, behind the ears, in nostrils and on the heels. Heels were also home to many additional fungi, including the genera Aspergillus, Cryptococcus, Rhodotorula, and Epicoccum.

“DNA sequence-based methods of identification enabled us to differentiate among species of fungi and to conclude that the diversity of fungi is highly dependent on the body site rather than the person who is sampled,” said Dr. Kong. A dermatologist, Dr. Kong explained why these sites were selected for exploration: “Our study focused on areas of the skin where we commonly find skin diseases that have been associated with fungi.”

The most complex site, the heel, is home to about 80 genus-level types of fungi. The researchers found about 60 types in toenail swab samples and 40 types in samples from the webs of the toes. Sites with moderate fungal diversity are inside the bend of the arm, inside of the forearm and palm, with each location supporting 18 to 32 genera of fungi. Surprisingly, head and trunk body sites — including the back, back of the neck, inside the ears, behind the ears, and between the eyebrows — have far fewer fungi types, with just two to 10 genera each.

The research team compared fungal diversity data with the skin bacteria on the same healthy adults. They found that while arms have high measures of bacterial diversity, they have lower fungal diversity. They found the reverse to be true for sites on the feet. Core body sites had neither a high bacterial diversity nor a high fungal diversity. The researchers had previously shown that bacterial diversity can be predicted by whether skin is moist, dry or oily. Fungal diversity, instead, seems to depend upon where a particular skin site is on the body.

The researchers observed, in addition, that there is greater similarity in the fungal community structure on the left and right sides of the same person’s body compared to the same body parts on any two individuals. Fungal communities also appear to be quite stable over time, with little change when tested on two separate occasions, up to three months apart.

“The data from our study gives us a baseline about normal individuals that we never had before,” Dr. Segre said. “The bottom line is your feet are teeming with fungal diversity, so wear your flip flops in locker rooms if you don’t want to mix your foot fungi with someone else’s fungi.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Saturday, July 25, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Tuesday, July 21, 2015
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
NIH-funded Vaccine for West Nile Virus Enters Human Clinical Trials
Enrollment is expected to be completed by December 2015.
Tuesday, July 07, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Boys More Likely to Have Antipsychotics Prescribed, Regardless of Age
NIH-funded study is the first look at antipsychotic prescriptions patterns in the U.S.
Thursday, July 02, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
New Medication for Alcohol Use Disorder
NIH begins clinical trial investigating a potential treatment for alcohol use disorder.
Friday, June 26, 2015
NIH Begins Clinical Trial of New Medication for Alcohol Use Disorder
Clinical trial will evaluate the safety and effectiveness of gabapentin enacarbil in treating alcohol use disorder.
Friday, June 26, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!