Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Researchers Conduct First Genomic Survey of Human Skin Fungal Diversity

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
Location on the body surface determines fungal composition with the greatest diversity on feet.

While humans have harnessed the power of yeast to ferment bread and beer, the function of yeast or other types of fungi that live in and on the human body is not well understood. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi at skin sites of healthy adults to define the normal populations across the skin and to provide a framework for investigating fungal skin conditions.

Human skin surfaces are complex ecosystems for microorganisms, including fungi, bacteria and viruses, which are known collectively as the skin microbiome. Although fungal infections of the skin affect about 29 million people in the United States, fungi can be slow and hard to grow in laboratories, complicating diagnosis and treatment of even the most common fungal skin conditions, such as toenail infections.

The research team from the National Human Genome Research Institute (NHGRI) and the National Cancer Institute (NCI), both parts of NIH, extended their recent genome sequencing study of skin bacteria, using DNA sequencing techniques optimized for identifying fungi. The study appears in the May 22, 2013 early online issue of Nature.

The researchers found that a single type of fungus, belonging to the genus Malassezia, is predominant on the head and trunk. Hands, which harbor a great diversity of bacteria, are home for relatively few types of fungi. In contrast, feet, including toenails, heels and toe webs contain tremendous diversity.

“Applying DNA sequencing to a study of the skin’s fungi is the natural progression in understanding microbial life that co-exists on our bodies,” said NHGRI Scientific Director Daniel Kastner, M.D., Ph.D. “Along with recent genome sequencing to define bacterial diversity, this analysis of fungal diversity provides a more complete human microbiome picture.”

“Fungal communities occupy complex niches, even on the human body,” said Heidi Kong, M.D., co-senior author and an investigator in the dermatology branch of NCI’s Center for Cancer Research. “By gaining a more complete awareness of the fungal and bacterial ecosystems, we can better address associated skin diseases, including skin conditions which can be related to cancer treatments.”

The researchers collected samples at 14 body sites from 10 healthy adults. DNA sequencing of the fungi in the samples identified fragments of DNA, called phylogenetic markers, which can be counted and used to distinguish one type of fungus from another. The sequencing efforts generated more than 5 million markers, from the samples, representing more than 80 fungal types, or genera. In contrast, traditional culturing methods produced 130 colonies of fungi that represented only 18 fungal genera.

In 20 percent of the study participants, the researchers observed problems such as heel and toe web scaling or toenail changes consistent with possible fungal infections. From genome sequencing analysis, the researchers found that different individuals with heel site infections have common fungal communities at that site, while those with toenail infections display tremendously different fungal communities.

“DNA sequencing reveals the great diversity of fungi, even those that are hard to grow in culture,” said Julie Segre, Ph.D., co-senior author and senior investigator, NHGRI Genetics and Molecular Biology Branch. Her expertise is the development of microbial DNA sequencing technology. “DNA sequencing enabled us to learn immeasurably more about where fungi predominate as a part of the human skin microbiome.”

The researchers identified fungi from two phyla, Ascomycetes and Basidiomycetes, as part of the normal fungal census at the 14 skin sites. The most common genus Malassezia was present in 11 of 14 sites sampled on the body. The researchers found Malassezia fungus on every skin surface of healthy volunteers, whether on the back of the head, behind the ears, in nostrils and on the heels. Heels were also home to many additional fungi, including the genera Aspergillus, Cryptococcus, Rhodotorula, and Epicoccum.

“DNA sequence-based methods of identification enabled us to differentiate among species of fungi and to conclude that the diversity of fungi is highly dependent on the body site rather than the person who is sampled,” said Dr. Kong. A dermatologist, Dr. Kong explained why these sites were selected for exploration: “Our study focused on areas of the skin where we commonly find skin diseases that have been associated with fungi.”

The most complex site, the heel, is home to about 80 genus-level types of fungi. The researchers found about 60 types in toenail swab samples and 40 types in samples from the webs of the toes. Sites with moderate fungal diversity are inside the bend of the arm, inside of the forearm and palm, with each location supporting 18 to 32 genera of fungi. Surprisingly, head and trunk body sites — including the back, back of the neck, inside the ears, behind the ears, and between the eyebrows — have far fewer fungi types, with just two to 10 genera each.

The research team compared fungal diversity data with the skin bacteria on the same healthy adults. They found that while arms have high measures of bacterial diversity, they have lower fungal diversity. They found the reverse to be true for sites on the feet. Core body sites had neither a high bacterial diversity nor a high fungal diversity. The researchers had previously shown that bacterial diversity can be predicted by whether skin is moist, dry or oily. Fungal diversity, instead, seems to depend upon where a particular skin site is on the body.

The researchers observed, in addition, that there is greater similarity in the fungal community structure on the left and right sides of the same person’s body compared to the same body parts on any two individuals. Fungal communities also appear to be quite stable over time, with little change when tested on two separate occasions, up to three months apart.

“The data from our study gives us a baseline about normal individuals that we never had before,” Dr. Segre said. “The bottom line is your feet are teeming with fungal diversity, so wear your flip flops in locker rooms if you don’t want to mix your foot fungi with someone else’s fungi.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
Friday, August 19, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!