Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Center Targets Ocean Contaminants and Human Health

Published: Thursday, May 23, 2013
Last Updated: Thursday, May 23, 2013
Bookmark and Share
A new center based at UC San Diego will target emerging contaminants found naturally in common seafood dishes as well as man-made chemicals that accumulate in human breast milk.

With $6 million in joint funding from the National Institutes of Health and the National Science Foundation, the new Scripps Center for Oceans and Human Health will track natural chemicals known as halogenated organic compounds, or HOCs. Human-manufactured varieties include polybrominated diphenyl ethers, or PBDEs, chemicals that until recently were manufactured and broadly used in commercial products as flame retardants in the textile and electronics sectors.

Less is known about the natural versions of HOCs that accumulate in marine mammals such as seals and dolphins and have been identified in top predators that humans consume such as tuna and swordfish. While PBDEs are well known for their toxicity and have been linked to a variety of human diseases, including cancer and thyroid ailments, the origin and transmission of their natural counterparts are poorly understood.

The Scripps Center for Oceans and Human Health will investigate the biology and chemistry behind these natural contaminants in the Southern California Bight, from Point Conception in Santa Barbara south to Ensenada, Mexico.

“The new Center for Oceans and Human Health is uniting leading experts in oceanography and medicine, two areas that make UC San Diego one of the best and most unique universities in the world, to address an emerging threat to public health and safety,” said UC San Diego Chancellor Pradeep K. Khosla. “UC San Diego is proud to be leading this effort in collaboration with other prominent institutions around the San Diego region.”

“The Scripps Center for Oceans and Human Health is focused on addressing to what extent nature contributes to the production and transmission of these toxins in the marine environment,” said Bradley Moore, director of the new center and a professor of oceanography and pharmaceutical sciences at Scripps and the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences. “Southern California waters will be the focus of our study, in part because our state has the highest reported incidence of polybrominated chemicals in human breast milk in the world.”

Scientists have recently become aware that polybrominated compounds appear to enter the marine environment not only as man-made chemicals but also as naturally produced chemicals synthesized by marine microorganisms and algae. Samples from dolphin blubber have revealed hundreds of HOCs that can be separately traced to human and natural sources.

“Humans are susceptible because of the food we consume, like tuna, and there is some evidence that these compounds may be increasing in the coastal ocean due to global change, such as nutrient input from human activity,” said Lihini Aluwihare, a Scripps associate professor of marine chemistry and geochemistry and the new center’s co-director. “The center will focus on biochemical synthesis pathways in tiny microorganisms all the way up through the marine food web to tracing these compounds into humans.”

“Scripps Institution of Oceanography is extremely proud to be the home of the new Scripps Center for Oceans and Human Health,” said Catherine Constable, interim director of Scripps. “After almost 110 years, Scripps continues to expand the scope of its contributions to science and society. Our leadership in marine science extends to matters of public concern, and the environmental contaminants that this new center will be studying provide an excellent example of this kind of work.”

To cover such a wide swath of research, the center will include other local scientists at Scripps’s Center for Marine Biotechnology and Biomedicine, San Diego State University’s Graduate School of Public Health, UC San Diego’s School of Medicine, and the Salk Institute for Biological Studies.

“It’s fascinating and a bit alarming that chemicals related to banned PBDEs are also produced naturally in the environment,” said Moore. “What makes them? And to what extent? While we don’t know the answers to these fundamental questions, our aim is to provide some answers so that we can begin to understand nature’s contribution to these toxic compounds that bioaccumulate in the fish we consume.”

“There is a lot of interest in the potential combined toxicity of the suite of HOCs — natural and man-made — to humans,” said Aluwihare. “People have done tests with individual model compounds, but we really don’t know how they act together.”

In addition to Moore and Aluwihare, the project includes Eric Allen, William Fenical, and Paul Jensen of Scripps; Christina Chambers, Jae Kim, and Michelle Leff of UC San Diego School of Medicine’s Department of Pediatrics; Eunha Hoh, Melbourne Hovell, and Penelope Quintana of San Diego State University; and Joseph Noel of the Salk Institute.

In a separate award on Oceans and Human Health also funded jointly by the National Institutes of Health and the National Science Foundation, Scripps marine biologist Amro Hamdoun will lead a new effort to understand the molecular processes that determine whether marine pollutants will move from the environment into humans and marine animals. The ultimate goal of this work, led by Hamdoun and co-investigator Geoffrey Chang of UC San Diego’s Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pharmacology, School of Medicine, is to determine why some chemicals accumulate in marine organisms, and ultimately in humans, while others do not.

Hamdoun and Chang will be merging cellular studies with biochemical and biophysical studies of an important family of proteins known as “drug transporters.” These proteins act as cellular bouncers, keeping noxious chemicals out of cells. Unfortunately, these same transporters play a crucial role in drug efficacy and retention. They can also be a problem in the treatment of diseases, such as drug-resistant cancers, where they act to keep out the drugs used to kill the cancer cells.

Their collaboration will develop models of transporters from a wide range of organisms that predict how the transporters will work.

“Obviously, having these new structures of marine transporters will enable us to design better pharmaceuticals, but one innovation is that we will apply this to predicting which kinds of toxic industrial chemicals are going to be problems for these cellular bouncers,” said Hamdoun. “This information will be essential for designing safer chemicals that do not accumulate in our bodies.”

“This collaboration is an exciting opportunity to combine and highlight two distinct disciplines at UC San Diego,” said Chang, “synergistically addressing important issues related to marine science and medicine.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!