Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nano-Needles for Cells

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
Tiny needles can force medicine into cells, even when they resist taking it.

Physicist Pawel Sikorski and his group are making beds of nails on a miniature scale – a plate covered in nano-needles designed to puncture individual cells.

It sounds a bit painful, but none of these needles will be going directly into your body, because the test subjects are cells under the microscope. Sikorski is working to develop advanced tools for researchers trying to understand what goes on inside the body’s cells.

“These nano-needles will make medical research more efficient,” he says.

Cells gobble up medicine

One way to understand how different molecules influence cell function is to deliver the molecules directly into cells and study the effect. Traditionally, research is this field is done by first placing (printing) many different substances on a glass or other surface to study their effect on the cells of interest.

The substances might be a potential anticancer drug that works by affecting the cell’s genetic material, or a molecule that will switch off a particular gene inside the cell. The researchers then cultivate cells on top of the potential medicine. Some of the cells will absorb the medicine, and the researchers can monitor the changes in the cells caused by the different drugs. But in many cases this method does not work very well, because some of the cells don’t want to take their medicine.

“With the new method, we attach molecules of the drug being tested to the tips of the nano-needles, and then inject it the same way you would with an ordinary medical syringe,” says Sikorski.

Grey grass and smart cells

The researchers create the nano-needles in a small ceramic oven. In goes something that looks like aluminium foil with a small burnt patch on it (which is actually a wafer-thin piece of copper), and two hours later at 500 degrees, the copper reacts with oxygen in the heat, creating copper oxide.

The final product looks like grey grass under the microscope, but the grass is actually the nano-needles. The next step is to put something similar to tallow onto the needles so that they can be removed from the copper plate. Glass is glued to the bottom, so that everything is transparent. The finished product looks like a small, round bed of nails. Researchers can now put cells on top of the nano-needles, and see if test drugs can be injected into cells.

But some cells are trying to fool scientists. While some cells readily impale on the nano-needles, others encapsulate the needles and grow around them.

“We are currently working on finding the correct methods to insert the needles, to ensure that all of the cells are impaled,” says Sikorski.

Nobody else in Norway is making nano-needles like these. The NTNU researchers are also the first group in the world to develop an even, larger-size copper surface with nano-needles.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!