Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Genome Offers Clues to Amphibian-Killing Fungus

Published: Thursday, May 30, 2013
Last Updated: Thursday, May 30, 2013
Bookmark and Share
A fungus that has decimated amphibians globally is much older than previously thought.

Fungus may therefore have recently spread through the global wildlife trade to new locations where amphibians have no immunity, reports a new study.

Previous research had suggested that a group of related strains of the fungus Batrachochytrium dendrobatidis (Bd) responsible for the current global pandemic, called the Global Panzootic Lineage (GPL), resulted from a recent lethal hybridization.

But now, an international team of researchers, including Cornell ecologist Kelly Zamudio, one of the project’s principal investigators (PI), has sequenced the genomes of 29 strains of the Bd fungus worldwide.

The results are published in the May 6 issue of the Proceedings of the National Academy of Sciences.

The findings reveal that the GPL existed long before the current pandemic, possibly descending from an ancestor that originated 26,000 years ago.

“We found a lot more genetic variation than people knew about,” said Zamudio, professor of ecology and evolutionary biology, of the sequenced Bd genomes. “It could lead us to a better understanding of what makes it kill. Once we know the genetic makeup of a pathogen, maybe we can understand what makes it such a powerful killer.”

The fungus infects some 350 amphibian species by attacking and degrading their skin, often causing death. Amphibians began dying off at alarming rates in the 1980s, particularly in Australia and South America, and researchers identified Bd as the culprit in 1998.

In the study, a sample from Brazil showed the earliest known divergence from that common ancestor.

“Early on in the history [of Bd], the Brazil isolate took a different evolutionary path,” said Zamudio.
With the genome sequenced, researchers may now begin to pick it apart and understand which genes are more or less active in causing disease.

Though more work is needed, the researchers found variations in genes that secrete peptidases, enzymes that break down proteins, such as skin proteins.

The fungus also has the ability to duplicate certain parts of its genome, but not others, and this replication is greater in the most virulent isolates found in Panama and Costa Rica, where amphibian declines are leading to extinctions.

With the new genetic data, scientists can focus on what recent environmental changes may have played roles in making the pathogen more virulent to its hosts in places where it is endemic and areas devastated by the GPL.

The study provides an example of how modern tools commonly used to understand human diseases may be applied to issues of biodiversity and conservation, she added.

Other PIs include lead author Erica Rosenblum of the University of California, Berkeley; Timothy James of the University of Michigan; and Jason Stajich of the University of California, Riverside.

The study was funded by the National Science Foundation, Cornell Center for Comparative Population Genetics and the Atkinson Center for a Sustainable Future.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Friday, September 30, 2016
$1M NIH Grant to Refine PCR Based Cancer Test
Researchers at Cornell University, Weill Cornell Medicine, the University of California, San Francisco, and the Infectious Diseases Institute in Kampala, Uganda, recieve a four-year, $1 million grant to hone technology for a quick, in-the-field diagnosis of Kaposi's sarcoma — a cancer frequently related to HIV infections.
Friday, September 02, 2016
Vortex Ring Freezing Applications
Accidental lab discovery could aid cell delivery and cell-free protein production.
Monday, August 22, 2016
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Thursday, August 18, 2016
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Wednesday, June 29, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
Eating Green Could be in Your Genes
Genetic variation uncovered that has evolved in populations that have historically favored vegetarian diets, such as in India, Africa and parts of East Asia.
Friday, April 01, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos