Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genome Offers Clues to Amphibian-Killing Fungus

Published: Thursday, May 30, 2013
Last Updated: Thursday, May 30, 2013
Bookmark and Share
A fungus that has decimated amphibians globally is much older than previously thought.

Fungus may therefore have recently spread through the global wildlife trade to new locations where amphibians have no immunity, reports a new study.

Previous research had suggested that a group of related strains of the fungus Batrachochytrium dendrobatidis (Bd) responsible for the current global pandemic, called the Global Panzootic Lineage (GPL), resulted from a recent lethal hybridization.

But now, an international team of researchers, including Cornell ecologist Kelly Zamudio, one of the project’s principal investigators (PI), has sequenced the genomes of 29 strains of the Bd fungus worldwide.

The results are published in the May 6 issue of the Proceedings of the National Academy of Sciences.

The findings reveal that the GPL existed long before the current pandemic, possibly descending from an ancestor that originated 26,000 years ago.

“We found a lot more genetic variation than people knew about,” said Zamudio, professor of ecology and evolutionary biology, of the sequenced Bd genomes. “It could lead us to a better understanding of what makes it kill. Once we know the genetic makeup of a pathogen, maybe we can understand what makes it such a powerful killer.”

The fungus infects some 350 amphibian species by attacking and degrading their skin, often causing death. Amphibians began dying off at alarming rates in the 1980s, particularly in Australia and South America, and researchers identified Bd as the culprit in 1998.

In the study, a sample from Brazil showed the earliest known divergence from that common ancestor.

“Early on in the history [of Bd], the Brazil isolate took a different evolutionary path,” said Zamudio.
With the genome sequenced, researchers may now begin to pick it apart and understand which genes are more or less active in causing disease.

Though more work is needed, the researchers found variations in genes that secrete peptidases, enzymes that break down proteins, such as skin proteins.

The fungus also has the ability to duplicate certain parts of its genome, but not others, and this replication is greater in the most virulent isolates found in Panama and Costa Rica, where amphibian declines are leading to extinctions.

With the new genetic data, scientists can focus on what recent environmental changes may have played roles in making the pathogen more virulent to its hosts in places where it is endemic and areas devastated by the GPL.

The study provides an example of how modern tools commonly used to understand human diseases may be applied to issues of biodiversity and conservation, she added.

Other PIs include lead author Erica Rosenblum of the University of California, Berkeley; Timothy James of the University of Michigan; and Jason Stajich of the University of California, Riverside.

The study was funded by the National Science Foundation, Cornell Center for Comparative Population Genetics and the Atkinson Center for a Sustainable Future.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
Eating Green Could be in Your Genes
Genetic variation uncovered that has evolved in populations that have historically favored vegetarian diets, such as in India, Africa and parts of East Asia.
Friday, April 01, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!