Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Aligning Energy Technologies and Climate Change Goals

Published: Thursday, June 06, 2013
Last Updated: Thursday, June 06, 2013
Bookmark and Share
The cost and performance of future energy technologies will largely determine to what degree nations are able to reduce the effects of climate change.

Using a new approach, MIT researchers evaluate energy technologies against climate goals and find that while the U.S. will need to transition the majority of its energy to carbon-free technologies by mid-century, past technology improvement rates paint an optimistic picture.

In a paper published in Environmental Science & Technology, MIT researchers demonstrate a new approach to help engineers, policymakers and investors think ahead about the types of technologies needed to meet climate goals.

“To reach climate goals, it is important to determine aspirational performance targets for energy technologies currently in development,” says Jessika Trancik, the lead author of the study and an assistant professor of engineering systems. “These targets can guide efforts and hopefully accelerate technological improvement.”

Trancik says that existing climate change mitigation models aren’t suited to provide this information, noting, “This research fills a gap by focusing on technology performance as a mitigation lever and providing a way to compare the dynamic performance of individual energy technologies to climate goals. This provides meaningful targets for engineers in the lab, as well as policymakers looking to create low-carbon policies and investors who need to know where their money can best be spent.”

The model compares the carbon intensity and costs of technologies to emission reduction goals, and maps the position of the technologies on a cost and carbon trade-off curve to evaluate how that position changes over time.

According to Nathan E. Hultman, director of Environmental and Energy Policy Programs at the University of Maryland’s School of Public Policy, this approach “provides an interesting and useful alternate method of thinking about both the outcomes and the feasibility of a global transition to a low-carbon energy system.” Hultman, who is also a fellow at the Brookings Institution, was not associated with the study.

How do technologies measure up?

According to Trancik, the cost and carbon trade-off curve can be applied to any region and any sector over any period of time to evaluate energy technologies against climate goals.  Along with her co-author, MIT master’s student Daniel Cross-Call, she models the period from 2030 to 2050 and specifically studies the U.S. and China’s electricity sectors.

The researchers find that while major demand-side improvements in energy efficiency will buy some time, the U.S. will need to transition at least 70 percent of its energy to carbon-free technologies by 2050 – even if energy demand is low and the emissions reduction target is high.

Demand-side changes buy more time in China. Efficiency, combined with less stringent emissions allocations, allows for one to two more decades of time to transition to carbon-free technologies. During this time, technologies are expected to improve.

This technology focused perspective, Trancik says, “may help developed and developing countries move past the current impasse in climate negotiations.”

While reaching climate goals is a seemingly formidable task, Trancik says that considering changes to technology performance over time is important. When comparing historical changes in technologies to the future changes needed to meet climate targets, the results paint an optimistic picture.

“Past changes in the cost and carbon curve are comparable to the future changes required to reach carbon intensity targets,” Trancik says. “Along both the cost and carbon axes there is a technology that has changed in the past as much as, or more than, the change needed in the future to reach the carbon intensity and associated cost targets. This is good news.”

The research was partially funded by the MIT Energy Initiative.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Friday, January 29, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!