Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Aligning Energy Technologies and Climate Change Goals

Published: Thursday, June 06, 2013
Last Updated: Thursday, June 06, 2013
Bookmark and Share
The cost and performance of future energy technologies will largely determine to what degree nations are able to reduce the effects of climate change.

Using a new approach, MIT researchers evaluate energy technologies against climate goals and find that while the U.S. will need to transition the majority of its energy to carbon-free technologies by mid-century, past technology improvement rates paint an optimistic picture.

In a paper published in Environmental Science & Technology, MIT researchers demonstrate a new approach to help engineers, policymakers and investors think ahead about the types of technologies needed to meet climate goals.

“To reach climate goals, it is important to determine aspirational performance targets for energy technologies currently in development,” says Jessika Trancik, the lead author of the study and an assistant professor of engineering systems. “These targets can guide efforts and hopefully accelerate technological improvement.”

Trancik says that existing climate change mitigation models aren’t suited to provide this information, noting, “This research fills a gap by focusing on technology performance as a mitigation lever and providing a way to compare the dynamic performance of individual energy technologies to climate goals. This provides meaningful targets for engineers in the lab, as well as policymakers looking to create low-carbon policies and investors who need to know where their money can best be spent.”

The model compares the carbon intensity and costs of technologies to emission reduction goals, and maps the position of the technologies on a cost and carbon trade-off curve to evaluate how that position changes over time.

According to Nathan E. Hultman, director of Environmental and Energy Policy Programs at the University of Maryland’s School of Public Policy, this approach “provides an interesting and useful alternate method of thinking about both the outcomes and the feasibility of a global transition to a low-carbon energy system.” Hultman, who is also a fellow at the Brookings Institution, was not associated with the study.

How do technologies measure up?

According to Trancik, the cost and carbon trade-off curve can be applied to any region and any sector over any period of time to evaluate energy technologies against climate goals.  Along with her co-author, MIT master’s student Daniel Cross-Call, she models the period from 2030 to 2050 and specifically studies the U.S. and China’s electricity sectors.

The researchers find that while major demand-side improvements in energy efficiency will buy some time, the U.S. will need to transition at least 70 percent of its energy to carbon-free technologies by 2050 – even if energy demand is low and the emissions reduction target is high.

Demand-side changes buy more time in China. Efficiency, combined with less stringent emissions allocations, allows for one to two more decades of time to transition to carbon-free technologies. During this time, technologies are expected to improve.

This technology focused perspective, Trancik says, “may help developed and developing countries move past the current impasse in climate negotiations.”

While reaching climate goals is a seemingly formidable task, Trancik says that considering changes to technology performance over time is important. When comparing historical changes in technologies to the future changes needed to meet climate targets, the results paint an optimistic picture.

“Past changes in the cost and carbon curve are comparable to the future changes required to reach carbon intensity targets,” Trancik says. “Along both the cost and carbon axes there is a technology that has changed in the past as much as, or more than, the change needed in the future to reach the carbon intensity and associated cost targets. This is good news.”

The research was partially funded by the MIT Energy Initiative.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Monday, August 17, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Scientific News
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Removing 62 Barriers to Pig–to–Human Organ Transplant in One Fell Swoop
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos