Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Big Multiple Sclerosis Breakthrough

Published: Tuesday, June 11, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
Phase 1 trial safely resets patients’ immune systems, reduces attack on myelin protein.

A phase 1 clinical trial for the first treatment to reset the immune system of multiple sclerosis (MS) patients showed the therapy was safe and dramatically reduced patients’ immune systems’ reactivity to myelin by 50 to 75 percent, according to new Northwestern Medicine research.

In MS, the immune system attacks and destroys myelin, the insulating layer that forms around nerves in the spinal cord, brain and optic nerve.

When the insulation is destroyed, electrical signals can’t be effectively conducted, resulting in symptoms that range from mild limb numbness to paralysis or blindness.

“The therapy stops autoimmune responses that are already activated and prevents the activation of new autoimmune cells,” said Stephen Miller, the Judy Gugenheim Research Professor of Microbiology-Immunology at Northwestern University Feinberg School of Medicine.

Miller continued, “Our approach leaves the function of the normal immune system intact. That’s the holy grail.”

Miller is the co-senior author of a paper on the study, which was published June 5 in the journal Science Translational Medicine.

The study is a collaboration between Northwestern’s Feinberg School, University Hospital Zurich in Switzerland and University Medical Center Hamburg-Eppendorf in Germany.

The human trial is the translation of more than 30 years of preclinical research in Miller's lab.

In the trial, the MS patients’ own specially processed white blood cells were used to stealthily deliver billions of myelin antigens into their bodies so their immune systems would recognize them as harmless and develop tolerance to them.

Current therapies for MS suppress the entire immune system, making patients more susceptible to everyday infections and higher rates of cancer.

While the trial’s nine patients - who were treated in Hamburg, Germany - were too few to statistically determine the treatment’s ability to prevent the progression of MS, the study did show patients who received the highest dose of white blood cells had the greatest reduction in myelin reactivity.

The primary aim of the study was to demonstrate the treatment’s safety and tolerability. It showed the intravenous injection of up to 3 billion white blood cells with myelin antigens caused no adverse affects in MS patients.

Most importantly, it did not reactivate the patients’ disease and did not affect their healthy immunity to real pathogens.

As part of the study, researchers tested patients’ immunity to tetanus because all had received tetanus shots in their lifetime.

One month after the treatment, their immune responses to tetanus remained strong, showing the treatment’s immune effect was specific only to myelin.

The human safety study sets the stage for a phase 2 trial to see if the new treatment can prevent the progression of MS in humans.

Scientists are currently trying to raise $1.5 million to launch the trial, which has already been approved in Switzerland. Miller’s preclinical research demonstrated the treatment stopped the progression of relapsing-remitting MS in mice.

“In the phase 2 trial we want to treat patients as early as possible in the disease before they have paralysis due to myelin damage.” Miller said. “Once the myelin is destroyed, it’s hard to repair that.”

In the trial, patients’ white blood cells were filtered out, specially processed and coupled with myelin antigens by a complex GMP manufacturing process developed by the study co-senior authors, Roland Martin, Mireia Sospedra, and Andreas Lutterotti and their team at the University Medical Center Hamburg-Eppendorf.

Then billions of these dead cells secretly carrying the myelin antigens were injected intravenously into the patients. The cells entered the spleen, which filters the blood and helps the body dispose of aging and dying blood cells.

During this process, the immune cells start to recognize myelin as a harmless and immune tolerance quickly develops. This was confirmed in the patients by immune assays developed and carried out by the research team in Hamburg.

This therapy, with further testing, may be useful for treating not only MS but also a host of other autoimmune and allergic diseases simply by switching the antigens attached to the cells.

Previously published preclinical research by Miller showed the therapy’s effectiveness for type 1 diabetes and airway allergy (asthma) and peanut allergy.

The MS human trial relates directly to Miller’s recently published research in mice in which he used nanoparticles - rather than a patient’s white blood cells - to deliver the myelin antigen.

Using a patient’s white blood cells is a costly and labor-intensive procedure. Miller’s study showed the nanoparticles, which are potentially cheaper and more accessible to a general population, could be as effective as the white blood cells as delivery vehicles.

This nanoparticle technology has been licensed to Cour Pharmaceutical Development Company and is in preclinical development.

Miller’s research represents several pillars of Northwestern’s Strategic Plan by discovering new ways to treat disease in the biomedical sciences and translating those discoveries into ideas and products that make the world a better place for everyone.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tracking How Herpes Simplex Virus Moves Through Cells
In a recent study, Derek Walsh, PhD, associate professor of Microbiology-Immunology, and his team showed how the herpes simplex virus (HSV) exploits microtubule plus-end tracking proteins to initiate transport and infection in human cells.
Friday, November 13, 2015
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Tuesday, November 10, 2015
Low Dose Beta-Blockers As Effective As High Dose After a Heart Attack?
Heart attack patients live as long – or even longer – on one-quarter the suggested dose.
Monday, September 28, 2015
Network Control: Letting Noise Lead The Way
Research team leverage cells' noisy nature to keep them healthy.
Monday, September 21, 2015
New Protein Manufacturing Process Unveiled
Scientists now have a way to study special proteins associated with disease.
Monday, September 14, 2015
Protein Found to Control Inflammatory Response
A new Northwestern Medicine study shows that a protein called POP1 prevents severe inflammation and, potentially, diseases caused by excessive inflammatory responses.
Monday, August 24, 2015
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Friday, August 21, 2015
Scientists Find What Controls Waking Up and Going to Sleep
Simple two-cycle mechanism turns key brain neurons on or off during 24-hour day.
Monday, August 17, 2015
Uncovering Genetic Factors in Leukemia
Northwestern Medicine scientists have discovered how a gene linked to leukemia functions, a finding that may have important implications for children with Down syndrome who have a higher risk of developing the blood cancer.
Thursday, August 06, 2015
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Wednesday, July 29, 2015
Uncovering the Spread of Bacteria in Pneumonia
Northwestern Medicine scientists have discovered the role a toxin produced by a pneumonia-causing bacterium plays in the spread of infection from the lungs to the bloodstream in hospitalized patients.
Tuesday, July 21, 2015
New Drug Reverses Anticoagulant Effects of Blood Thinner
An investigational drug has been shown to reverse the anticoagulant effects of dabigatran in patients who present with bleeding or need for emergent surgery.
Thursday, July 16, 2015
Uncovering Mechanisms of Replication in HPV
The study describes two cellular proteins which are key regulators in the replication of Human Papilloma Virus.
Friday, May 22, 2015
Healing Plants Inspire New Psychiatric Drugs
Treatments used by traditional healers in Nigeria have inspired scientists to synthesize four new chemical compounds that could lead to better therapies for people with psychiatric disorders.
Wednesday, May 13, 2015
DNA Suggests All Early Eskimos Migrated from North Slope
First evidence to genetically tie all Inuit populations to Alaska's North Slope.
Wednesday, May 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos