Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find Unique Peptide with Therapeutic Potential

Published: Thursday, June 13, 2013
Last Updated: Thursday, June 13, 2013
Bookmark and Share
UTSW researchers identify Tat-beclin 1 against cancers, neurological disorders, and infectious diseases.

UT Southwestern Medical Center scientists have synthesized a peptide that shows potential for pharmaceutical development into agents for treating infections, neurodegenerative disorders, and cancer through an ability to induce a cell-recycling process called autophagy.

Autophagy is a fundamental recycling process in which intracellular enzymes digest unneeded and broken parts of the cell into their individual building blocks, which are then reassembled into new parts.

The role of autophagy is crucial both in keeping cells healthy and in enabling them to fight different diseases. Physician scientists in UT Southwestern’s Center for Autophagy Research are deciphering how to manipulate the autophagy process in an effort to disrupt the progression of disease and promote health.

In their latest findings reported online in the journal Nature, Center researchers were able to synthesize a peptide called Tat-beclin 1, which induces the autophagy process.

Mice treated with Tat-beclin-1 were resistant to several infectious diseases, including West Nile virus and another mosquito-borne virus called chikungunya that is common to Asia, Africa, and India.

In additional experiments, the team demonstrated that human cells treated with the peptide were resistant to HIV infection in a laboratory setting.

“Because autophagy plays such a crucial role in regulating disease, autophagy-inducing agents such as the Tat–beclin 1 peptide may have potential for pharmaceutical development and the subsequent prevention and treatment of a broad range of human diseases,” said Dr. Beth Levine, Director of the Center for Autophagy Research and senior author of the study.

Dr. Levine, Professor of Internal Medicine and Microbiology, is a Howard Hughes Medical Institute investigator at UT Southwestern.

Disruption of the autophagy process is implicated in a wide variety of conditions including aging, and diseases, including cancers, neurodegenerative diseases such as Parkinson’s and Alzheimer’s, and infectious diseases such as those caused by West Nile and HIV viruses.

UT Southwestern has applied for a patent on Tat-beclin-1. Peptides are strings of amino acids found in proteins. The Tat-beclin 1 peptide was derived from sequences in beclin 1, one of the first known proteins in mammals found to be essential for autophagy, a finding that was made by Dr. Levine’s laboratory.

Her research has since demonstrated that defects in beclin 1 contribute to many types of disease. Conversely, beclin 1 activity and the autophagy pathway appear to be important for protection against breast, lung, and ovarian cancers, as well as for fighting off viral and bacterial infections, and for protecting individuals from neurodegenerative diseases and aging.

The study was supported by grants from the National Institutes of Health, the National Science Foundation, the HHMI, the Netherlands Organization for Scientific Research-Earth and Life Sciences Open Program, Cancer Research United Kingdom, and a Robert A. Welch Foundation Award.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Regenerative Medicine Biologists Discover a Cellular Structure that Explains Fate of Stem Cells
The findings are presented in the journal Nature.
Thursday, July 02, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Boosting Gut Bacteria Defense System May Lead to Better Treatments
Life-threatening bloodstream infections reversed by enhancing a specific immune defense response.
Tuesday, June 09, 2015
Immunity Enzyme Defends Against Tuberculosis Infection
Study shows that cGAS enzyme is essential for defense against the tuberculosis bacteria.
Wednesday, June 03, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
UT Southwestern’s Dr. Philipp Scherer Receive Banting Medal
Dr. Scherer will receive the prestigious Medal for diabetes research.
Friday, May 08, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Scherer to Receive Banting Medal for Diabetes Research
Medal recognizes significant, long-term contributions to the understanding, treatment, or prevention of diabetes.
Thursday, April 30, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!