Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two Gene Variants May Predict Who Will Benefit from Breast Cancer Prevention Drugs

Published: Friday, June 14, 2013
Last Updated: Friday, June 14, 2013
Bookmark and Share
NIH-supported discovery could advance individualized care of high-risk women.

In women at high risk for breast cancer, a long-term drug treatment can cut the risk of developing the disease in half.

Researchers supported by the National Institutes of Health have now identified two gene variants that may predict which women are most likely to benefit from this therapy - and which should avoid it.

The work represents a major step toward truly individualized breast cancer prevention in women at high risk for the disease based on their age, family history of breast cancer, and personal medical history.

"Our study reveals the first known genetic factors that can help predict which high-risk women should be offered breast cancer prevention treatment and which women should be spared any unnecessary expense and risk from taking these medications," said the study's lead scientist, James N. Ingle, M.D., professor of oncology at the Mayo Clinic in Rochester, Minn.

Ingle continued, "We also discovered new information about how the drugs tamoxifen and raloxifene work to prevent breast cancer."

Ingle and Mayo-based colleagues in the NIH Pharmacogenomics Research Network (PGRN) conducted the study in collaboration with PGRN-affiliated researchers at the RIKEN Center for Genomic Medicine in Tokyo.

Data and patient DNA came from the long-running National Surgical Adjuvant Breast and Bowel Project (NSABP), supported by the National Cancer Institute.

"This innovative, PGRN-enabled international research partnership has produced the first gene-based method to identify which women are likely to benefit from a readily available preventive therapy," said PGRN director Rochelle Long, Ph.D., of the NIH's National Institute of General Medical Sciences. "Because the disease affects so many women worldwide, this work will have a significant impact."

The research, which shows nearly a six-fold difference in disease risk depending on a woman's genetic makeup, appears in the June 13, 2013, issue of Cancer Discovery.

Women undergoing breast cancer preventive treatment take tamoxifen or raloxifene for five years.

In rare cases, the drugs can cause dangerous side effects, including blood clots, strokes and endometrial cancer.

Many women never try the therapy because the chance of success seems small (about 50 women in the NSABP trials needed to be treated to prevent one case of breast cancer) compared to the perceived risk of side effects.

More women might benefit from the potentially life-saving strategy if doctors could better predict whether the therapy was highly likely to work. That's what the current study begins to do.

The investigators leveraged data from past NSABP breast cancer prevention trials that involved a total of more than 33,000 high-risk women - the largest sets of such data in the world. Women in the trials gave scientists permission to use their genomic and other information for research purposes.

The scientists analyzed the genomic data by focusing on more than 500,000 genetic markers called single nucleotide polymorphisms (SNPs). Each SNP represents a single variation in the DNA sequence at a particular location within the genome.

To determine whether any SNPs were associated with breast cancer risk, the researchers computationally searched for SNPs that occurred more commonly in women who developed breast cancer during the trial than in women who remained free of the disease.

The analysis identified two such SNPs - one in a gene called ZNF423 and the other near a gene called CTSO.

Neither ZNF423 nor CTSO - nor any SNPs related to these genes - had previously been associated with breast cancer or response to the preventive drugs.

The scientists' work revealed that women with the beneficial version of the two SNPs were 5.71 times less likely to develop breast cancer while taking preventive drugs than were women with neither advantageous SNP.

Using a variety of biochemical studies, the scientists learned that ZNF423 and CTSO act by affecting the activity of BRCA1, a known breast cancer risk gene.

Healthy versions of BRCA1 reduce disease by repairing a serious form of genetic damage. Harmful versions of BRCA1 dramatically increase a woman's chance of developing breast cancer.

"The results of our collaborative research bring us a major step toward the goal of truly individualized prevention of breast cancer," said Ingle. "Our findings also underscore the value of studying the influence of gene variations on drug responses."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Thursday, August 27, 2015
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Thursday, August 27, 2015
In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
Large Percentage of Youth with HIV May Lack Immunity to Measles, Mumps, Rubella
NIH study finds those vaccinated before starting modern HIV therapy may be at risk.
Tuesday, August 18, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientists Uncover Nuclear Process in the Brain that May Affect Disease
NIH-funded study highlights the possible role of glial brain cells in neurological disorders.
Tuesday, August 18, 2015
Newly Discovered Cells Restore Liver Damage in Mice Without Cancer Risk
The liver is unique among organs in its ability to regenerate after being damaged. Exactly how it repairs itself remained a mystery until recently, when researchers supported by the NIH discovered a type of cell in mice essential to the process
Monday, August 17, 2015
Study Finds Cutting Dietary Fat Reduces Body Fat More than Cutting Carbs
In a recent study, restricting dietary fat led to body fat loss at a rate 68 percent higher than cutting the same number of carbohydrate calories when adults with obesity ate strictly controlled diets.
Friday, August 14, 2015
Inappropriate Medical Food Use in Managing Patients with a Type of Metabolic Disorder
Researchers have proposed that there is a need for more rigorous clinical study of dietary management practices for patients with IEMs, including any associated long-term side effects, which may in turn result in the need to reformulate some medical foods.
Friday, August 14, 2015
PINK1 Protein Crucial for Removing Broken-Down Energy Reactors
NIH study suggests potential new pathway to target for treating ALS and other diseases.
Thursday, August 13, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Neurons’ Broken Machinery Piles Up in ALS
NIH scientists identify a transport defect in a model of familial ALS.
Thursday, August 13, 2015
Dr. Peter Kilmarx Appointed Deputy Director of Fogarty International Center
An expert in infectious disease research and HIV/AIDS prevention.
Wednesday, August 12, 2015
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!