Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Expelled DNA that Traps Toxins May Backfire in Obese

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.

The research describes the phenomenon and its potential cause, why it may threaten health and how to use this knowledge to develop new therapies for an array of diseases. It was published in Frontiers in Immunology this past spring.

The study is the first to show that the DNA of macrophages, the biggest immune cells, can unravel and move outside the cell to snag invading pathogens. Called extracellular traps, these sticky DNA remnants can occur anywhere, but the study found a troubling number inside rafts of macrophages surrounding dead fat cells in obese mice.

In that extracellular environment, the traps feed a vicious cycle of inflammation, increasing risk of several major diseases, the scientists predict. Uncovering what causes macrophage DNA to unravel, the study included a description indicating new preventative therapies for these diseases may be near at hand.

“Our collaborator, Paul Thompson at Scripps, has developed a new drug that we have shown can block trap formation and cancer growth by inhibiting the process that triggers macrophage DNA to unravel and become traps,” said Scott Coonrod, associate professor at the Baker Institute for Animal Health at Cornell, who oversaw the study.  “We envision someday using this new drug as a preventative therapy for cancer and other inflammation-related diseases.”

A chemical event called hyper-citrillunation appears to cause extracellular trap formation, according to Coonrod’s findings. It occurs when histones, which pack DNA into the nucleus, lose their electrical attraction to DNA, causing the roughly 2-meters-worth of DNA to be propelled outside the cell. While these traps normally help to clean up bacteria following infections, they also have a dark side. They are increasingly being found in diseases that do not have an infectious component, suggesting that, in some cases, traps may actually promote disease progression.

Breast cancer presents a particular concern for people who are overweight, said Coonrod’s collaborator Dr. Andrew Dannenberg at Weill Cornell Medical College. Dannenberg’s team was the first to find crown-like-structures (CLS), donut-shaped chunks of dead fat cells that are surrounded by macrophages, in human breasts. Dannenberg’s work suggests that these structures release inflammatory signals that increase the risk of breast cancer.

“One of macrophages’ jobs is to clean up dead cells,” said Coonrod. “When they come to sites with CLS to vacuum up the dead fat, the environment is full of inflammatory chemicals that promote trap formation. We looked at CLS lesions in breast tissue to see if macrophage traps were there. Our initial findings suggest that they are.”

Inflammation plays a large role in the development of cancer. The Coonrod group is currently looking into the possibility that trap production in CLS lesions promotes inflammation.

“While still in the early stages, these findings are exciting because we have a drug that can block trap production,” said Coonrod. “One could imagine that our anti-trap drug might be used one day to prevent disease by suppressing inflammation in inflammatory environments, such as breast tissue in women who are obese, thereby preventing disease progression.”

The research “Identification of Macrophage Extracellular Trap-Like Structures in Mammary Gland Adipose Tissue: A Preliminary Study,” was published in March and was supported in part by a U.S. Department of Defense Hope Scholar Award, the Breast Cancer Research Foundation and the Botwinick–Wolfensohn Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Wednesday, June 29, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
Eating Green Could be in Your Genes
Genetic variation uncovered that has evolved in populations that have historically favored vegetarian diets, such as in India, Africa and parts of East Asia.
Friday, April 01, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!