Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Memory-Boosting Chemical Is Identified in Brains of Mice

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
UCSF cell biologists find molecule targets a key biological pathway.

Memory improved in mice injected with a small, drug-like molecule discovered by UC San Francisco researchers studying how cells respond to biological stress.

The same biochemical pathway the molecule acts on might one day be targeted in humans to improve memory, according to the senior author of the study, Peter Walter, PhD, UCSF professor of biochemistry and biophysics and a Howard Hughes Medical Institute investigator.

The discovery of the molecule and the results of the subsequent memory tests in mice were published in eLife, an online scientific open-access journal, on May 28.

In one memory test included in the study, normal mice were able to relocate a submerged platform about three times faster after receiving injections of the potent chemical than mice that received sham injections.

The mice that received the chemical also better remembered cues associated with unpleasant stimuli – the sort of fear conditioning that could help a mouse avoid being preyed upon.

Notably, the findings suggest that despite what would seem to be the importance of having the best biochemical mechanisms to maximize the power of memory, evolution does not seem to have provided them, Walter said.

“It appears that the process of evolution has not optimized memory consolidation; otherwise I don’t think we could have improved upon it the way we did in our study with normal, healthy mice,” Walter said.

Identifying the Chemical that Enhances Memory

The memory-boosting chemical was singled out from among 100,000 chemicals screened at the Small Molecule Discovery Center at UCSF for their potential to perturb a protective biochemical pathway within cells that is activated when cells are unable to keep up with the need to fold proteins into their working forms.

However, UCSF postdoctoral fellow Carmela Sidrauski, PhD, discovered that the chemical acts within the cell beyond the biochemical pathway that activates this unfolded protein response, to more broadly impact what’s known as the integrated stress response. In this response, several biochemical pathways converge on a single molecular lynchpin, a protein called eIF2 alpha.

Scientists have known that, in organisms ranging in complexity from yeast to humans, different kinds of cellular stress – such as a backlog of unfolded proteins, DNA-damaging UV light, a shortage of the amino acid building blocks needed to make protein, viral infection, iron deficiency — trigger different enzymes to act downstream to switch off eIF2 alpha.

“Among other things, the inactivation of eIF2 alpha is a brake on memory consolidation,” perhaps an evolutionary consequence of a cell or organism becoming better able to adapt in other ways, Walter said.

Turning off eIF2 alpha dials down production of most proteins, some of which may be needed for memory formation, Walter said. But eIF2 alpha inactivation also ramps up production of a few key proteins that help cells cope with stress.

Study co-author Nahum Sonenberg, PhD, of McGill University previously linked memory and eIF2 alpha in genetic studies of mice, and his lab group also conducted the memory tests for the current study.

Potential for Human Drug Development

The chemical identified by the UCSF researchers is called ISRIB, which stands for integrated stress response inhibitor. ISRIB counters the effects of eIF2 alpha inactivation inside cells, the researchers found.

“ISRIB shows good pharmacokinetic properties [how a drug is absorbed, distributed and eliminated], readily crosses the blood-brain barrier, and exhibits no overt toxicity in mice, which makes it very useful for studies in mice,” Walter said. These properties also indicate that ISRIB might serve as a good starting point for human drug development, according to Walter.

Walter said he is looking for scientists to collaborate with in new studies of cognition and memory in mouse models of neurodegenerative diseases and aging, using ISRIB or related molecules.

In addition, chemicals such as ISRIB could play a role in fighting cancers, which take advantage of stress responses to fuel their own growth, Walter said. He already is exploring ways to manipulate the unfolded protein response to inhibit tumor growth, based on his earlier discoveries.

At a more basic level, Walter said, he and other scientists can now use ISRIB to learn more about the role of the unfolded protein response and the integrated stress response in disease and normal physiology.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Iron in the Blood Could Cause Cell Damage
Concentrations of iron similar to those delivered through standard treatments can trigger DNA damage within 10 minutes, when given to cells in the laboratory.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!