Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Memory-Boosting Chemical Is Identified in Brains of Mice

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
UCSF cell biologists find molecule targets a key biological pathway.

Memory improved in mice injected with a small, drug-like molecule discovered by UC San Francisco researchers studying how cells respond to biological stress.

The same biochemical pathway the molecule acts on might one day be targeted in humans to improve memory, according to the senior author of the study, Peter Walter, PhD, UCSF professor of biochemistry and biophysics and a Howard Hughes Medical Institute investigator.

The discovery of the molecule and the results of the subsequent memory tests in mice were published in eLife, an online scientific open-access journal, on May 28.

In one memory test included in the study, normal mice were able to relocate a submerged platform about three times faster after receiving injections of the potent chemical than mice that received sham injections.

The mice that received the chemical also better remembered cues associated with unpleasant stimuli – the sort of fear conditioning that could help a mouse avoid being preyed upon.

Notably, the findings suggest that despite what would seem to be the importance of having the best biochemical mechanisms to maximize the power of memory, evolution does not seem to have provided them, Walter said.

“It appears that the process of evolution has not optimized memory consolidation; otherwise I don’t think we could have improved upon it the way we did in our study with normal, healthy mice,” Walter said.

Identifying the Chemical that Enhances Memory

The memory-boosting chemical was singled out from among 100,000 chemicals screened at the Small Molecule Discovery Center at UCSF for their potential to perturb a protective biochemical pathway within cells that is activated when cells are unable to keep up with the need to fold proteins into their working forms.

However, UCSF postdoctoral fellow Carmela Sidrauski, PhD, discovered that the chemical acts within the cell beyond the biochemical pathway that activates this unfolded protein response, to more broadly impact what’s known as the integrated stress response. In this response, several biochemical pathways converge on a single molecular lynchpin, a protein called eIF2 alpha.

Scientists have known that, in organisms ranging in complexity from yeast to humans, different kinds of cellular stress – such as a backlog of unfolded proteins, DNA-damaging UV light, a shortage of the amino acid building blocks needed to make protein, viral infection, iron deficiency — trigger different enzymes to act downstream to switch off eIF2 alpha.

“Among other things, the inactivation of eIF2 alpha is a brake on memory consolidation,” perhaps an evolutionary consequence of a cell or organism becoming better able to adapt in other ways, Walter said.

Turning off eIF2 alpha dials down production of most proteins, some of which may be needed for memory formation, Walter said. But eIF2 alpha inactivation also ramps up production of a few key proteins that help cells cope with stress.

Study co-author Nahum Sonenberg, PhD, of McGill University previously linked memory and eIF2 alpha in genetic studies of mice, and his lab group also conducted the memory tests for the current study.

Potential for Human Drug Development

The chemical identified by the UCSF researchers is called ISRIB, which stands for integrated stress response inhibitor. ISRIB counters the effects of eIF2 alpha inactivation inside cells, the researchers found.

“ISRIB shows good pharmacokinetic properties [how a drug is absorbed, distributed and eliminated], readily crosses the blood-brain barrier, and exhibits no overt toxicity in mice, which makes it very useful for studies in mice,” Walter said. These properties also indicate that ISRIB might serve as a good starting point for human drug development, according to Walter.

Walter said he is looking for scientists to collaborate with in new studies of cognition and memory in mouse models of neurodegenerative diseases and aging, using ISRIB or related molecules.

In addition, chemicals such as ISRIB could play a role in fighting cancers, which take advantage of stress responses to fuel their own growth, Walter said. He already is exploring ways to manipulate the unfolded protein response to inhibit tumor growth, based on his earlier discoveries.

At a more basic level, Walter said, he and other scientists can now use ISRIB to learn more about the role of the unfolded protein response and the integrated stress response in disease and normal physiology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Intracellular Microlasers Could Allow Precise Labeling of up to a Trillion Individual Cells
MGH investigators have induced structures incorporated within individual cells to produce laser light at wavelengths that differ based on the size, shape and composition of each microlaser, allowing precise labeling of individual cells.
Real-Time Imaging of Lung Lesions During Surgery
Targeted molecular agents cause lung adenocarcinomas to fluoresce during surgery, according to pilot report.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
New Vaccine For Chlamydia to Use Synthetic Biology
Prokarium Ltd, a biotechnology company developing transformational oral vaccines, have announced new funding from SynbiCITE, the UK’s Innovation and Knowledge Centre for Synthetic Biology.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!