Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Aspirin May Fight Cancer by Slowing DNA Damage

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
UCSF-led study of patients with pre-cancerous conditions probed NSAID effects on mutation rate.

Aspirin is known to lower risk for some cancers, and a new study led by a UC San Francisco scientist points to a possible explanation, with the discovery that aspirin slows the accumulation of DNA mutations in abnormal cells in at least one pre-cancerous condition.

“Aspirin and other non-steroidal anti-inflammatory drugs, which are commonly available and cost-effective medications, may exert cancer-preventing effects by lowering mutation rates,” said Carlo Maley, PhD, a member of the UCSF Helen Diller Family Comprehensive Cancer Center, and an expert on how cancers evolve in the body over time.

In the study, published June 13 in the online journal PLOS Genetics, Maley – working with gastroenterologist and geneticist Brian Reid, MD, PhD, of the Fred Hutchinson Cancer Research Center – analyzed biopsy samples from 13 patients with a pre-cancerous condition called Barrett’s esophagus who were tracked for six to 19 years. In an “observational crossover” study design, some patients started out taking daily aspirin for several years, and then stopped, while others started taking aspirin for the first time during observation. The goal was to track the rate of mutations in tissues sampled at different times.

The researchers found that biopsies taken while patients were on an aspirin regimen had on average accumulated new mutations about 10 times more slowly than biopsies obtained during years when patients were not taking aspirin.

“This is the first study to measure genome-wide mutation rates of a pre-malignant tissue within patients for more than a decade, and the first to evaluate how aspirin affects those rates,” Maley said.

Gender and ethnic distribution of study patients reflected the known demographics of esophageal cancer, which predominantly affects white, middle-aged and elderly men, he said. Barrett’s esophagus only occasionally progresses to esophageal cancer.

Asprin's Effect of Reducing Inflammation

Cancers are known to accumulate mutations over time much more rapidly than normal tissue, and different mutations arise in different groups of cells within the same tumor. The acquisition of key mutations ultimately allows tumor cells to grow out of control, and diversity within a tumor may foster drug resistance, a phenomenon that is a major focus of Maley’s research.

Maley plans to test a hypothesis that may explain the results – that aspirin’s lowering of mutation rates is due to the drug’s effect of reducing inflammation. Inflammation, a response of the immune system, in recent years has been recognized as a hallmark of cancer. Maley said that less inflammation may result in less production within pre-cancerous tissue of oxidants known to damage DNA, and may dampen growth-stimulating signaling.

For the duration of the study, the rate of accumulation of mutations measured in the biopsied tissue between time points was slow, even when patients were not taking aspirin, with the exception of one patient. While mutations accumulated at a steady rate, the vast majority of mutations arose before the abnormal tissue was first detected in the clinic, the researchers concluded.

These findings are consistent with the fact that although Barrett’s esophagus is a significant risk factor for esophageal cancer, the vast majority of cases do not progress to cancer, Maley said.

In the one patient who later went on to develop cancer, a population of cellular “clones” with a great number of mutations emerged shortly before he started taking aspirin.

Expanding Research to Include Lung Cancer Cases

More studies are needed to further explore the link between non-steroidal anti-inflammatory drugs, mutation rates and the development of invasive cancer, Maley said. He plans to continue studying Barrett’s esophagus and esophageal cancer, and to expand his research to investigate lung cancer.

Rather than aiming to kill the most tumor cells, it may be better to try to halt or slow growth and mutation. Current drug treatments for cancer may in many cases hasten the emergence of cancer that is more difficult to eradicate, according to Maley. The capability to mutate frequently allows tumors to become resistant to drug treatment, he said. A better-adapted mutant can begin to spin off a population of genetic clones that survives and grows, while poorly adapted tumor cells die off.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!