Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Key Protein is Linked to Circadian Clocks, Helps Regulate Metabolism

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
Study sheds light on molecular basis for metabolic health and disease.

Inside each of us is our own internal timing device. It drives everything from sleep cycles to metabolism, but the inner workings of this so-called “circadian clock” are complex, and the molecular processes behind it have long eluded scientists.

But now, researchers at the Gladstone Institutes have discovered how one important protein falls under direct instructions from the body’s circadian clock. Furthermore, they uncover how this protein regulates fundamental circadian processes – and how disrupting its normal function can throw this critical system out of sync.

In the latest issue of the Journal of Neuroscience, Gladstone investigator Katerina Akassoglou, PhD, and her team reveal in animal models how the production of the p75 neurotrophin receptor (p75NTR) protein oscillates in time with the body’s natural circadian clock – and how these rhythmic oscillations help regulate vital metabolic functions. This discovery underscores the widespread importance of p75NTR by offering insight into how the circadian clock helps maintain the body’s overall metabolic health.

Virtually every organism on the planet – from bacteria to humans – has a circadian clock, a biological timing mechanism that oscillates with a period of about 24 hours and is coordinated with the cycle of day and night.

While it runs independent of external cues, it is influenced by the rhythms of light, temperature and food availability. Intriguingly, recent studies have also found a link between circadian clocks and metabolism.

“Important metabolic functions are also heavily influenced by circadian clocks, which is why activities such as chronic night-shift work – which can cause a misalignment of this clock – increase one’s risk for metabolic and autoimmune diseases such as obesity, Type 2 diabetes, cancer and multiple sclerosis,” said Akassoglou, who is also a professor of neurology at UC San Francisco, with which Gladstone is affiliated. “In this study, we pinpointed p75NTR as an important molecular ‘link’ between circadian clocks and metabolic health.”

Key Protein Found Throughout the Body

Originally, p75NTR was only thought to be active in the nervous system. Later studies found it to be active in many cell types throughout the body, suggesting that it impacts a variety of biological functions.

Last year, Gladstone researchers discovered that p75NTR was present in the liver and in fat cells, and that it regulates glucose levels in the blood – an important metabolic process. Since these findings uncovered a link between p75NTR and metabolism, the research team tested – first in a petri dish and then in animal models – whether there was also a link between p75NTR and the circadian clock.

The team focused on two genes called Clock and Bmal1. These so-called “circadian regulator genes,” and others like them, are found throughout the body. Their activity controls the body’s circadian clock. The researchers wanted to see if there was a connection between these circadian genes and p75NTR.

“Our initial experiments revealed such a connection,” recalls Gladstone postdoctoral fellow Bernat Baeza-Raja, PhD, the paper’s lead author. “In individual cells, we saw that p75NTR production was controlled by Clock and Bmal1, which bind directly to the gene that codes for the p75NTR and start production of the protein.”

P75NTR’s Impact on Circadian Clock Systems

But perhaps even more important than how p75NTR was produced was when. The team found that p75NTR production, like the circadian clock genes themselves, oscillated in a 24-hour cycle – in sync with the cells’ natural circadian rhythm. Experiments in mouse models further supported these findings.

And when the team genetically modified a group of mice so that it lacked the circadian Clock gene, everything else fell out of sync. The circadian oscillation of p75NTR production was disrupted, and p75NTR levels dropped.

However, what was most fascinating, say the researchers, was how a drop in p75NTR levels then affected a variety of circadian clock systems. Specifically, the regular oscillations of other circadian genes in the brain and the liver became disrupted, as well as genes known to regulate glucose and lipid metabolism.

“The finding that a loss of p75NTR affected circadian and metabolic systems is strong evidence that this protein is intricately tied to both,” said Life Sciences Institute director Alan Saltiel, PhD, who is also a professor at the University of Michigan and was not involved in the study. “It will be fascinating to see what additional insight Dr. Akassoglou and her team will uncover as they continue to examine the role of p75NTR in circadian clocks and metabolic function.”

“While these findings reveal p75NTR to be an important link between circadian clocks and metabolism, the system is complex, and there are likely other factors at play,” said Akassoglou. “We are currently working to identify the relationship between the circadian clock, metabolism and the immune system, so that one day we could develop therapies to treat diseases influenced by circadian clock disruption – including not only obesity and diabetes, but also potentially multiple sclerosis and even Alzheimer’s disease.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos