Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Precocious Puberty Gene Found

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
Broad Institute scientists have discovered a gene which causes some cases of early-onset puberty.

The storybook character Peter Pan may have escaped the fate, but in the real world growing up is inevitable.

Biologically speaking, the turn to adulthood happens in humans when the brain tells the pituitary glands to start producing hormones, jump-starting puberty. This typically happens around age 10 in girls and 11 in boys. But, for a small percentage of children, the process can start much earlier. If the brain initiates the process before age 8 in girls or 9 in boys, the child experiences central precocious (or “early”) puberty.

Though early puberty has become more common in recent years, the causes of this unsettling condition have remained unclear. Last week, however, a team of scientists from the Broad Institute, Boston Children’s Hospital, Brigham and Women’s Hospital, and the University of São Paulo in Brazil announced a breakthrough in an article published in the New England Journal of Medicine: they identified a gene, MKRN3, that causes some cases of central precocious puberty.

The team isolated the gene by analyzing whole-exome sequencing data – the genetic code from the protein-coding regions of the genome – of 40 individuals from 15 different families affected by central precocious puberty. The families had been selected because each had multiple family members with the condition. In analyzing the sequencing data, the researchers found mutations in MKRN3 in family members from 5 of the 15 families. In each case, the mutation prevents the gene from functioning normally, suggesting that, if MKRN3 isn’t working properly, puberty starts early in the affected individuals.

“Finding this common pattern was exciting evidence that mutations in MKRN3 lead to precocious puberty. We never thought a single gene was going to cause a third of the familial cases that we were studying,” said Broad researcher and paper co-author Andrew Dauber. Dauber is a pediatric endocrinologist at Boston Children’s Hospital and works in the lab of Broad senior associate member Joel Hirschhorn, who was also a co-author of the study.

An interesting twist to the finding is that MKRN3 is an imprinted gene. At conception, individuals inherit copies of each gene from both parents and, in most cases, both the maternal and paternal copies of the gene work equally. However, in imprinted genes, only the copy from a specific parent is expressed; the other is silenced by biochemical activity during the assembly of its DNA. In MKRN3, only the copy inherited from the father is expressed.

“What that means is that, if you have a faulty copy of MKRN3, who you inherited it from dictates whether or not you’ll have early puberty. If you inherited the mutation on the copy from your mother, you will carry it but will not be affected. However, if you have a loss of function in the copy of MKRN3 that you inherit from your father, then you will have early puberty.”

That means that the condition can skip generations, or that cousins can be affected even if their parents are not. Dauber said that all of the cases the team found in their study fit MKRN3’s imprinted genetic pattern.

Dauber credited the Broad’s genome sequencing and analysis tools and support team for helping them make the discovery.

“That aspect of the study was clearly empowered by the unbelievable work of the Genomics Platform and the Genome Sequencing and Analysis Group in the Broad’s Medical and Population Genetics program, which supports the Genome Analysis Toolkit (GATK). They gave us amazingly good quality sequencing data with rich annotations, and support through the whole genome analysis pipeline.”

A second part of the study was completed at Brigham and Women’s Hospital, where senior author Ursula Kaiser and colleagues tested the connection between MKRN3 and puberty onset by measuring MKRN3 expression in the brains of mice. They found that expression levels of MKRN3 decreased dramatically immediately before puberty and remained low after puberty, supporting the idea that MKRN3 affects the timing of puberty by suppressing its onset.

Dauber said that the research team cannot say what percentage of central precocious puberty cases are instigated by MKRN3, since their study carefully selected families with clear hereditary patterns in order to increase the chance of finding a genetic link to the condition. However, he believes that the finding will ease the minds of patients and parents in those cases in which MKRN3 does prove to be the culprit.

“People come into the clinic asking: could it be the lotion I’m using, or did I take too many hormones, or should I be eating organic foods? These are all reasonable questions,” Dauber said. “Because of this finding, we’ll be able to give some people reassurance that they could not have prevented central precocious puberty – that it didn’t result from something they did or did not do.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Screen of Human Genome Reveals Set of Genes Essential for Cellular Viability
Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells.
Monday, October 19, 2015
DARPA Awards $32 Million Contract to MIT, Broad Institute Foundry
A facility at the Broad Institute of MIT and Harvard and MIT that aims to achieve the full potential of engineering biology has received a five-year, $32 million contract from the Defense Advanced Research Projects Agency (DARPA).
Monday, September 28, 2015
Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
Monday, September 28, 2015
Scientists Discover New System For Human Genome Editing
CRISPR-Cpf1 system could disrupt both scientific and commercial landscape.
Monday, September 28, 2015
Researchers Develop a New Means of Killing Harmful Bacteria
Engineered particles are capable of producing toxins that are deadly to targeted bacteria.
Friday, June 26, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
CRISP-Disp Leverages CRISPR-Cas9 to Deliver RNA Structures to Targets in the Genome
A team of researchers from the Broad Institute and the Harvard Stem Cell Institute has developed CRISP-Disp, a method that expands on the CRISPR-Cas9 system, allowing researchers to display multiple, large RNA structures on the Cas9 protein.
Wednesday, June 10, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
Highly Efficient New Cas9 for In Vivo Genome Editing
New finding is expected to expand therapeutic and experimental applications of CRISPR.
Tuesday, April 07, 2015
Broad Institute of MIT and Harvard and Bayer Healthcare Expand their Partnership
Collaboration to develop therapies for cardiovascular disease.
Thursday, April 02, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Scientists Map the Human Loop-ome, Revealing a New Form of Genetic Regulation
Researchers describe the results of a five-year effort to map, in unprecedented detail, how the 2-meter long human genome folds inside the nucleus of a cell.
Tuesday, December 23, 2014
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos