Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Moffitt Cancer Center Researchers Identify Genetic Variants for Prostate Cancers

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
Researchers have developed a method for identifying aggressive prostate cancers that require immediate therapy.

It relies on understanding the genetic interaction between single nucleotide polymorphisms (SNPs). The goal is to better predict a prostate cancer’s aggressiveness to avoid unnecessary radical treatment.

Their study was published in the online journal PLOS ONE in April.

According to the authors, prostate cancer accounts for 20 percent of all cancers and 9 percent of cancer deaths. It is the most common cancer and was the second leading cause of cancer death in American men in 2012.

“For most prostate cancer patients, the disease progresses relatively slowly,” said study co-author Hui-Yi Lin, Ph.D., assistant member of the Chemical Biology and Molecular Medicine Program at Moffitt. “However, some cases grow aggressively and metastasize. It is often difficult to tell the difference between the two.”

The two treatment options for aggressive prostate cancer — radical surgery and radiation therapy — have negative side effects, such as incontinence and erectile dysfunction. It is why the authors believe there is an urgent need for biomarkers that can identify or predict aggressive types of prostate cancer.

Through examining combinations of genetic variants, or SNP-SNP interactions, the researchers have identified and validated several genetic changes that are related to prostate cancer aggressiveness. Their work also shows that the epithelial growth factor receptor may be the hub for these interactions because it is involved in the growth of blood vessels (angiogenesis), which in turn stimulates tumor growth.

“Our findings identified five SNP-SNP interactions in the angiogenesis genes associated with prostate cancer aggressiveness,” explained study co-author Jong Y. Park, Ph.D., associate member of Moffitt’s Cancer Epidemiology Program. “We successfully detected the genotype combinations that put patients at risk of aggressive prostate cancer and then explored the underlying biological associations among angiogenesis genes associated with aggressive prostate cancer.”

The researchers concluded that the gene network they constructed based on SNP-SNP interactions indicates there are novel relationships among critical genes involved in the angiogenesis pathway in prostate cancer.

“Our findings will help physicians identify patients with an aggressive type of prostate cancer and may lead to better personalized treatment in the future,” Park said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Mechanism Controlling Lung Cancer Stem Cell Growth
Moffitt Cancer Center researchers have discovered a novel mechanism that plays an important role in the maintenance of lung cancer stem cells.
Thursday, April 09, 2015
Novel Approach to Visualize & Measure Protein Complexes in Tumors
Moffitt Cancer Center researchers have developed a PLA to analyze biological processes occurring within tumors.
Monday, January 19, 2015
Moffitt, Vermillion Collaborate to Model Improvements in Ovarian Cancer Care
The purpose of the study is to produce clinical and economic data to support a new value-based practice model.
Monday, May 12, 2014
Protein Complex Linked to Cancer Growth May Also Help Fight Tumors
Researchers have discovered a gene expression signature that may lead to new immune therapies for lung cancer patients.
Thursday, July 25, 2013
Peripheral Blood Stem Cell Transplants from Unrelated Donors Associated with Chronic GHVD
Moffitt cancer center researcher, colleagues have conducted a two-year clinical trial.
Tuesday, October 23, 2012
Race, Ethnicity Affect Likelihood of Finding a Suitable Unrelated Stem Cell Donor
Researchers at Moffitt Cancer Center describe the greater difficulty in finding matched, unrelated donors for non-Caucasian patients who are candidates for hematopoietic cell transplantation (HCT).
Monday, September 17, 2012
Moffitt, Sanford-Burnham and Florida Hospital Create Personalized Medicine Partnership
The partnership will conduct collaborative research to accelerate discovery and to develop new treatments in the areas of cancer and metabolic diseases.
Thursday, February 16, 2012
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!