Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genes Involved in Birth Defects May Also Lead to Mental Illness

Published: Tuesday, June 25, 2013
Last Updated: Tuesday, June 25, 2013
Bookmark and Share
Gene mutations that lead to major birth defects may also cause subtle disruptions in the brain that contribute to psychiatric disorders.

Over the past several years, researchers in the laboratory of psychiatrist Benjamin Cheyette, MD, PhD, have shown that mutations in a gene called Dact1 cause cell signaling networks to go awry during embryonic development. Researchers observed that mice with Dact1 mutations were born with a range of severe malformations, including some reminiscent of spina bifida in humans.

This new study was designed to explore whether Dact1 mutations exert more nuanced effects in the brain that may lead to mental illness. In doing so, Cheyette, John Rubenstein, MD, PhD, and colleagues in UCSF’s Nina Ireland Laboratory of Developmental Neurobiology used a genetic technique in adult mice to selectively delete the Dact1 protein only in interneurons, a group of brain cells that regulates activity in the cerebral cortex, including cognitive and sensory processes. Poor function of interneurons has been implicated in a range of psychiatric conditions.

As reported in the June 24 online issue of PLOS ONE, researchers found that the genetically altered interneurons appeared relatively normal and had managed to find their proper position in the brain’s circuitry during development. But the cells had significantly fewer synapses, the sites where communication with neighboring neurons takes place. In additional observations not included in the new paper, the team also noted that the cells’ dendrites – fine extensions that normally form bushy arbors studded with synapses – were poorly developed and sparsely branched.

“When you delete this gene function after initial, early development – just eliminating it in neurons after they’ve formed – they migrate to the right place and their numbers are correct, but their morphology is a little off,” Cheyette said. “And that’s very much in line with the kinds of pathology that people have been able to identify in psychiatric illness.

"Neurological illnesses tend to be focal, with lesions that you can identify or pathology you can see on an imaging study," Cheyette explained. "Psychiatric illnesses? Not so much. The differences are really subtle and hard to see.”

Key Gene's Role in Development of Human Nervous System

The Dact1 protein is part of a fundamental biological system known as the Wnt (pronounced “wint”) signaling pathway. Interactions among proteins in the Wnt pathway orchestrate many processes essential to life in animals as diverse as fruit flies, mice and humans, including the proper development of the immensely complex human nervous system from a single fertilized egg cell.

One way the Wnt pathway manages this task is by maintaining the “polarity” of cells during development, said Cheyette, “a process of sequestering, increasing the concentration of one set of proteins on one side of the cell and a different set of proteins on the other side of the cell.” Polarity is particularly important as precursor cells transform into nerve cells, Cheyette said, because neurons are “the most polarized cells in the body,” with specialized input and output zones that must wind up in the proper spots if the cells are to function normally.

Cheyette said his group is now conducting behavioral experiments with the mice analyzed in the new PLOS ONE paper and with genetically related mouse lines to test whether these mice have behavioral abnormalities in sociability, sensory perception, anxiety or motivation that resemble symptoms in major psychiatric disorders.

He also hopes to collaborate with UCSF colleagues on follow-up experiments to determine whether the activity of neurons lacking Dact1 is impaired in addition to the structural flaws identified in the new study and prior published work from his lab.

Meanwhile, as-yet-unpublished findings from human genetics research conducted by Cheyette’s group suggest that individuals with autism are significantly more likely than healthy comparison subjects to carry mutations in a Wnt pathway gene called WNT1.

“Just because a gene plays an important role in the embryo doesn’t mean it isn’t also important in the brain later, and might be involved in psychiatric pathology,” said Cheyette. “When these genes are mutated, someone may look fine, develop fine and have no obvious medical problems at birth, but they may also develop autism in childhood or have a psychotic break in adulthood and develop schizophrenia.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Scientific News
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
HIV Particles Used to Trap Intact Mammalian Protein Complexes
Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!