Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Psychiatric Disorders Linked to a Protein Involved in the Formation of Long-Term Memories

Published: Tuesday, June 25, 2013
Last Updated: Tuesday, June 25, 2013
Bookmark and Share
Researchers have discovered a pathway by which the brain controls a molecule critical to forming long-term memories and connected with bipolar disorder and schizophrenia.

The discovery was made by a team of scientists led by Alexei Morozov, an assistant professor at the Virginia Tech Carilion Research Institute.

The mechanism – a protein called Rap1 – controls L-type calcium channels, which participate in the formation of long-term memories. Previous studies have also linked alterations in these ion channels to certain psychiatric disorders. The discovery of the channels’ regulation by Rap1 could help scientists understand the physiological genesis of bipolar disorder and schizophrenia.

“People with genetic mutations affecting L-type calcium channels have higher rates of bipolar disorder and schizophrenia,” said Morozov. “This suggests that there might be a relationship between the activation of L-type calcium channels and these psychiatric disorders. Understanding how these ion channels are controlled is the first step to determining how their functioning or malfunctioning affects mental health.”

A single neuron in the brain can have thousands of synapses, each of which can grow, strengthen, weaken, and change structurally in response to learning new information. Electric signals traveling from neuron to neuron jump across these synapses through chemical neurotransmitters. The release of these chemicals is caused by the flow of electrically charged atoms through a particular subset of ion channels known as voltage-gated calcium channels.

Previous studies have shown that blocking these ion channels inhibits the formation of long-term memories. Although it was known that L-type calcium channels are activated in response to learning, how they are controlled was a mystery.

In the experiment, Morozov and colleagues knocked out the gene responsible for coding the enzyme Rap1, which he suspected played a role in activating L-type calcium channels. The researchers then used live imaging techniques to monitor the release of neurotransmitters and electron microscopy to visualize L-type channels at synapses. They discovered that, without Rap1, the L-type calcium channels were more active and more abundant at synapses all the time, increasing the release of neurotransmitters. The results showed that Rap1 is responsible for suppressing L-type calcium channels, allowing them to activate only at the proper moments, possibly during long-term memory formation.

“Our next step is to determine whether this new signaling pathway is altered in cases of mental disease,” said Morozov. “If so, it could help us gain a better understanding of the molecular underpinnings of channel-related psychiatric disorders, such as bipolar disorder and schizophrenia. Such knowledge would go a long way toward developing new therapeutic methods.”

The discovery appeared in The Journal of Neuroscience in the study “Rap1 Signaling Prevents L-Type Calcium Channel-Dependent Neurotransmitter Release,” by Jaichandar Subramanian, now a research fellow at the Picower Institute for Learning and Memory at the Massachusetts Institute of Technology; Louis Dye, a staff scientist at the Microscopy and Imaging Core of the National Institute of Child Health and Human Development; and Morozov, who is also an assistant professor in Virginia Tech’s School of Biomedical Engineering and Sciences.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Wednesday, November 25, 2015
Improving Antibiotic Effectiveness
New drug approach could offer relief to patients, hospitals fighting antibiotic resistance.
Tuesday, September 15, 2015
Cancer Markers May be Present Early During Human Development
Researchers at the Virginia Bioinformatics Institute have uncovered a link between the genomes of cells originating in the neural crest and development of tumors — a discovery that could lead to new ways to diagnose and treat cancer.
Friday, August 07, 2015
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Wednesday, July 29, 2015
Compound To Combat Malaria Parasite Identified
Study identifies non-mevalonate pathway for isoprenoid biosynthesis as key antimalarial drug target.
Tuesday, May 05, 2015
Superior Ability To Rapidly Detect Volatile Organic Compounds
Researchers develop a credit-card-sized gas chromatography platform that can analyze volatile compounds within seconds.
Wednesday, April 22, 2015
Genome-Editing Tool Bolsters Efforts To Thwart 'Deadliest' Animal
Researchers at the Fralin Life Sciences Institute have turbocharged a red-hot new technology to make it more efficient to make changes in mosquito genetics.
Tuesday, March 17, 2015
Elucidating Odor Properties of Elk River Contaminants
Virginia Tech researchers utilized olfactory gas chromatography to pinpoint the concentrations of contaminants in the air.
Tuesday, April 01, 2014
Virginia Tech Scientist Proposes Revolutionary Naming System for All Life on Earth
Boris Vinatzer has developed a new way to classify and name organisms based on genome sequencing.
Wednesday, February 26, 2014
Researchers Discover Evidence to Support Theory of 'Buckyball' Formation
Researchers have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle is the result of a breakdown of larger structures.
Tuesday, September 24, 2013
Scanning Innovation can Improve Personalized Medicine
New combinations of medical imaging technologies hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine.
Wednesday, November 28, 2012
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos