Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Berkeley Lab Confirms Thirdhand Smoke Causes DNA Damage

Published: Tuesday, June 25, 2013
Last Updated: Tuesday, June 25, 2013
Bookmark and Share
A study led by researchers from Lawrence Berkeley National Laboratory has found for the first time that thirdhand smoke causes significant genetic damage in human cells.

Furthermore, the study also found that chronic exposure is worse than acute exposure, with the chemical compounds in samples exposed to chronic thirdhand smoke existing in higher concentrations and causing more DNA damage than samples exposed to acute thirdhand smoke, suggesting that the residue becomes more harmful over time.

“This is the very first study to find that thirdhand smoke is mutagenic,” said Lara Gundel, a Berkeley Lab scientist and co-author of the study. “Tobacco-specific nitrosamines, some of the chemical compounds in thirdhand smoke, are among the most potent carcinogens there are. They stay on surfaces, and when those surfaces are clothing or carpets, the danger to children is especially serious.”

Their paper, “Thirdhand smoke causes DNA damage in human cells,” was published in the journal Mutagenesis. The lead investigator was Bo Hang, a biochemist in the Life Sciences Division of Berkeley Lab; he worked with an interdisciplinary group, including chemists from Berkeley Lab’s Environmental Energy Technologies Division—Gundel, Hugo Destaillats and Mohamad Sleiman—as well as scientists from UC San Francisco, UCLA Medical Center and the University of Texas.

The researchers used two common in vitro assays, the Comet assay and the long amplicon-qPCR assay, to test for genotoxicity and found that thirdhand smoke can cause both DNA strand breaks and oxidative DNA damage, which can lead to gene mutation. Genotoxicity is associated with the development of diseases and is a critical mechanism responsible for many types of cancer caused by smoking and secondhand smoke exposure.

“Until this study, the toxicity of thirdhand smoke has not been well understood,” Hang said. “Thirdhand smoke has a smaller quantity of chemicals than secondhand smoke, so it’s good to have experimental evidence to confirm its genotoxicity.”

It is the first major study of disease-related mechanisms to come out of the California Consortium on the Health Effects of Thirdhand Smoke, which was established two years ago largely as a result of work published in 2010 by Gundel, Destaillats, Sleiman and others. The Consortium is funded by the Tobacco-Related Disease Research Program, which is managed by the University of California and funded by state cigarette taxes.

The 2010 studies from Berkeley Lab found that residual nicotine can react with ozone and nitrous acid—both common indoor air pollutants—to form hazardous agents. When nicotine in thirdhand smoke reacts with nitrous acid it undergoes a chemical transformation and forms carcinogenic tobacco-specific nitrosamines, such as NNA, NNK and NNN. Nicotine can react with ozone to form ultrafine particles, which can carry harmful chemicals and pass through human tissue. Humans can be exposed to thirdhand smoke through inhalation, ingestion or skin contact.

Thirdhand smoke is particularly insidious because it is extremely difficult to eradicate. Studies have found that it can still be detected in dust and surfaces of apartments more than two months after smokers moved out. Common cleaning methods such as vacuuming, wiping and ventilation have not proven effective in lowering nicotine contamination. “You can do some things to reduce the odors, but it’s very difficult to really clean it completely,” said Destaillats. “The best solution is to substitute materials, such as change the carpet, repaint.”

Now the new study suggests thirdhand smoke could become more harmful over time. To generate the samples, the researchers put paper strips in smoking chambers. The acute samples, generated at Berkeley Lab, were exposed to five cigarettes smoked in about 20 minutes, and the chronic samples, generated at UCSF, were exposed to cigarette smoke for 258 hours over 196 days. During that time, the chamber was also ventilated for about 35 hours.

The researchers found that the concentrations of more than half of the compounds studied were higher in the chronic samples than in the acute. They also found higher levels of DNA damage caused by the chronic samples. “The cumulative effect of thirdhand smoke is quite significant,” Gundel said. “The findings suggest the materials could be getting more toxic with time.”

Hang and coworkers exposed the human cells by first extracting the compounds from the paper with a culture medium then using the medium to culture the human cells for 24 hours. The concentrations of the compounds were carefully measured. “They are close to real-life concentrations, and in fact are on the lower side of what someone might be exposed to,” Hang said.

Next Hang is pursuing further understanding of the chemistry of the NNA reaction with DNA bases. NNA is a tobacco-specific nitrosamine that is not found in freshly emitted secondhand smoke. “It looks like it’s a very important component of thirdhand smoke, and it is much less studied than NNK and NNN in terms of its mutagenic potential,” he said.

The researchers conclude in their paper: “Ultimately, knowledge of the mechanisms by which thirdhand smoke exposure increases the chance of disease development in exposed individuals should lead to new strategies for prevention.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Dirty,Crusty Meals Fit for (Long-Dormant) Microbes
Researchers apply the latest analytical techniques to further our understanding of desert biocrusts.
Wednesday, September 23, 2015
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Tuesday, September 01, 2015
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Wednesday, August 12, 2015
Atomic View of Microtubules
Berkeley lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein.
Thursday, August 06, 2015
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Thursday, June 18, 2015
Using Microbial Communities to Assess Environmental Contamination
First there were canaries in coal mines, now there are microbes at nuclear waste sites, oil spills and other contaminated environments.
Thursday, May 14, 2015
Bringing Out the Best in X-ray Crystallography Data
“Function follows form” might have been written to describe proteins.
Wednesday, November 06, 2013
Less Toxic Metabolites, More Chemical Product
The first dynamic regulatory system that prevents the build-up of toxic metabolites in engineered microbes has been reported.
Thursday, October 31, 2013
Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase
Berkeley Lab research could help scientists predict how carbon is stored underground.
Tuesday, September 24, 2013
New Biochip Holds Great Promise for Quickly Triaging People After Radiation Exposure
Chip could lead to a much-needed way to quickly triage people after possible radiation exposure.
Friday, August 16, 2013
Sugar for Biofuels: Making Do with More
Joint BioEnergy Institute researchers engineer plant cell walls to boost sugar yields for biofuels.
Tuesday, April 02, 2013
Berkeley Lab’s Advanced Light Source Finds Big Surprise in Paleozoic Scorpion Fossil
Berkeley Lab’s scientists used a powerful microscope to detect remnants of protein and chitin in the exoskeleton of a 417-million-year-old fossil of an extinct mega-scorpion.
Monday, March 07, 2011
The next carbon capture tool could be new, improved grass
Miscanthus, a potential feedstock for biofuel, could pull double duty in the fight against climate change by sequestering carbon in the soil for thousands of years.
Tuesday, October 26, 2010
New Electrostatic-based DNA Microarray Technique Could Revolutionize Medical Diagnostics
Researchers invent a technique in which DNA or RNA assays can be read and evaluated without the need of elaborate chemical labeling or sophisticated instrumentation.
Wednesday, July 02, 2008
Ultraconserved Elements in the Genome: Are They Indispensable?
Three years ago, ultraconserved elements were discovered in the genomes of mice, rats, and humans.
Friday, September 07, 2007
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos