Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oregon Chemists Moving Forward with Tool to Detect Hydrogen Sulfide

Published: Wednesday, June 26, 2013
Last Updated: Wednesday, June 26, 2013
Bookmark and Share
University of Oregon chemists have developed a selective probe that detects hydrogen sulfide (H2S) levels as low as 10 parts per billion in biological samples.

They say the technique could serve as a new tool for basic biological research and as an enhanced detection system for H2S in suspected bacterially contaminated water sources.

Hydrogen sulfide, a colorless gas, has long been known for its dangerous toxicity — and its telltale smell of rotten eggs — in the environment, but in the last decade the gas has been found to be produced in mammals, including humans, with seemingly important roles in molecular signaling and cardiac health. Detection methods for biological systems are emerging from many laboratories as scientists seek to understand the roles of H2S in general health and different diseases.

Reporting in the Journal of Organic Chemistry — online in advance of regular print publication — researchers in the UO lab of Michael D. Pluth, professor of chemistry, describe the development of a colorimetric probe that relies on nucleophilic aromatic substitution to react selectively with H2S to produce a characteristic purple product, allowing for precise H2S measurement.

"This paper describes a new way to selectively detect H2S," said Pluth, who has been pursuing detection methods for the gas under a National Institutes of Health "Pathway to Independence" grant. That early career award began while he was a postdoctoral researcher at the Massachusetts Institute of Technology. "This technique allows you to use instruments to quantify how much H2S has been produced in a sample, and the distinctive color change allows for naked-eye detection.”

In biological samples, he said, the approach allows for a precise measurement. In the environment, he added, the technique could be used to determine if potentially harmful H2S-producing bacteria are a contaminant in water sources through the creation of testing kits to detect the gas when levels are above a defined threshold.

The key to the technique, said the paper's lead author, doctoral student Leticia A. Montoya, is the reaction process in which the probe reacts with H2S to produce a distinctly identifiable purple compound. "This method allows you look selectively at hydrogen sulfide versus any other nucleophiles or biological thiols in a system," Montoya said. "It allows you to more easily visualize where H2S is present."

The chemical reaction produced in the experiments, Pluth said, also holds the potential to be applied in a variety of materials, on surfaces and films, with appropriate modifications. The UO has applied for a provisional patent to cover the technology.

The study is the second in which Pluth's lab has reported potential detection probes for H2S. Last year, in the journal Chemical Communications, Montoya and Pluth described their development of two bright fluorescent probes that sort out H2S from among cysteine, glutathione and other reactive sulfur, nitrogen and oxygen species in living cells.

"We're really interested in making sharper tools," Pluth said. "We have the basic science worked out, and now we want to move forward to fine-tune our tools so that we can better use them to answer important scientific questions."

"University of Oregon researchers are helping to foster a more sustainable future by developing powerful new tools and entrepreneurial technologies," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO graduate school. "This important research from Dr. Pluth’s lab may someday alert us to environmental contaminants and could also impact basic science and human health."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oregon team Charts New Understanding of Actin Filament Growth in Cells
Biochemists have determined how tiny synthetic molecules disrupt an important actin-related molecular machine in cells and also the crystal structure of that machine when bound to a natural inhibitor.
Tuesday, July 30, 2013
First Steps of Synapse Building Captured in Live Zebra Fish Embryos
Using spinning disk microscopy, scientists have gained a new window on how synapse-building components move to worksites in the central nervous system.
Tuesday, April 23, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Intracellular Microlasers Could Allow Precise Labeling of up to a Trillion Individual Cells
MGH investigators have induced structures incorporated within individual cells to produce laser light at wavelengths that differ based on the size, shape and composition of each microlaser, allowing precise labeling of individual cells.
Real-Time Imaging of Lung Lesions During Surgery
Targeted molecular agents cause lung adenocarcinomas to fluoresce during surgery, according to pilot report.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
New Vaccine For Chlamydia to Use Synthetic Biology
Prokarium Ltd, a biotechnology company developing transformational oral vaccines, have announced new funding from SynbiCITE, the UK’s Innovation and Knowledge Centre for Synthetic Biology.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!