Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH to Significantly Reduce the use of Chimpanzees in Research

Published: Friday, June 28, 2013
Last Updated: Friday, June 28, 2013
Bookmark and Share
NIH plans to retain but not breed up to 50 chimpanzees for future biomedical research.

The National Institutes of Health plans to substantially reduce the use of chimpanzees in NIH-funded biomedical research and designate for retirement most of the chimpanzees it currently owns or supports. NIH Director Francis S. Collins, M.D., Ph.D. accepted most of the recommendations made by an independent advisory council for implementing a set of principles and criteria defined by the Institute of Medicine for the use of chimpanzees in NIH-funded research.

The chimpanzees that will remain available for research will be selected based on research projects that meet the IOM’s principles and criteria for NIH funding. The chimpanzees designated for retirement could eventually join more than 150 other chimpanzees already in the Federal Sanctuary System. The Federal Sanctuary System was established in 2002 by the Chimpanzee Health Improvement, Maintenance and Protection (CHIMP) Act   and Chimp Haven operates the Federal Sanctuary System, which is overseen by NIH.

“Americans have benefitted greatly from the chimpanzees’ service to biomedical research, but new scientific methods and technologies have rendered their use in research largely unnecessary,” said Dr. Collins. “Their likeness to humans has made them uniquely valuable for certain types of research, but also demands greater justification for their use. After extensive consideration with the expert guidance of many, I am confident that greatly reducing their use in biomedical research is scientifically sound and the right thing to do.”

In accepting the recommendations, NIH plans to:

• retain but not breed a small fraction of chimpanzees for future research that meets the IOM principles and criteria

• provide ethologically appropriate facilities (i.e., as would occur in their natural environment) for those chimpanzees as defined by NIH based on the advisory council recommendations and with space requirements yet to be determined

• establish a review panel to consider research projects proposing the use of chimpanzees with the IOM principles and criteria after projects have cleared the NIH peer review process

• wind down research projects using NIH-owned or -supported chimpanzees that do not meet the IOM principles and criteria in a way that preserves the research and minimizes the impact on the animals

• retire the majority of the NIH-owned chimpanzees deemed unnecessary for biomedical research to the Federal Sanctuary System contingent upon resources and space availability in the sanctuary system

Some technical changes in NIH’s legal authority are needed to retire additional chimpanzees to the Federal Sanctuary System. NIH will continue working with Congress to remedy a provision that currently limits the amount of financial resources NIH may put toward retiring chimpanzees and caring for them in the Federal Sanctuary System.

While broadly accepting the recommendations of ethologically appropriate facilities, NIH did not accept, due to the lack of scientific consensus, the recommendation that the primary living space of research chimpanzees be at least 1,000 square feet per chimpanzee. NIH will engage chimpanzee behavior and facilities experts to determine the appropriate minimum space requirement for research chimpanzees.

“Today’s decision by NIH culminates more than two years of intensive deliberations among NIH leadership, independent chimpanzee experts, researchers, bioethicists, and members of the public,” said James M. Anderson, M.D., Ph.D., NIH deputy director for program coordination, planning, and strategic initiatives, whose division oversees the NIH Chimpanzee Management Program. “We are grateful to all who have contributed their insight and expertise during the advisory process.”

NIH’s full response to the recommendations and public comments can be found here

The events that led to the decision by NIH are:

• In December 2010, the NIH Director commissioned a study by the Institute of Medicine to determine the continued scientific need for chimpanzees in NIH-funded research  .

• The IOM, in its recommendations in December 2011, concluded that most current use of chimpanzees in biomedical research is unnecessary and that the use of chimpanzees in research that may still be needed should be guided by a set of principles and criteria.

• That same month, Dr. Collins accepted the IOM recommendations. He charged a working group of the Council of Councils (CoC), an independent advisory committee, to make recommendations on how NIH should implement the IOM principles and criteria.

• The CoC presented its recommendations(PDF - 695KB) in January 2013.

• The CoC recommendations were issued for public comment in the same month.

The U.S. Fish and Wildlife Service (USFWS) recently issued a proposed rule (PDF - 695KB)   that lists captive chimpanzees as endangered. NIH expects to adapt its policies for research projects using chimpanzees to comply with the conservation guidelines that the USFWS establishes in a potential final rule.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Wednesday, December 07, 2016
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Wednesday, December 07, 2016
Study to Assess Shorter-Duration Antibiotics in Children
Physicians plan a clinical trial to evaluate whether short course anti-biotics are effective at treating CAP in children.
Wednesday, November 30, 2016
First New HIV Vaccine Study for Seven Years Begins
South Africa hosts historic clinical trial of experimental HIV vaccine aiming to safely prevent HIV infection.
Wednesday, November 30, 2016
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
Food Additives Promote Inflammation, Colon Cancer
Dietary emulsifiers promoted colon cancer in a mouse model by altering gut microbes and increasing gut inflammation.
Wednesday, November 23, 2016
Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
More Immunotherapy Options Approved for Lung Cancer
The FDA has approved a new immunotherapy drug for certain patients with non-small cell lung cancer.
Monday, November 21, 2016
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Tuesday, November 15, 2016
Potential Therapies Against Drug-Resistant Bacteria Identified
Researchers create new identification method for drug and drug combinations that may combat resistant infections.
Thursday, November 10, 2016
Testing Zika Vaccine in Humans Begins
The first of five planned clinical trials to test ZPIV vaccine in humans has begun.
Tuesday, November 08, 2016
Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
Cannabinoid Receptor Structure Revealed
Scientists provided a detailed view of the primary molecule through which cannabinoids exert their effects on the brain. The findings might help guide the design of more targeted medicines with fewer side effects.
Wednesday, November 02, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Boosting Effectiveness of Asthma Therapy
A team of scientists from UCSF has developed a new treatment to dampen bronchospasm.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!