Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Variants Predict Response to Breast Cancer Drugs

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Scientists found genetic variations that could be used to identify women who are most likely to benefit from breast cancer prevention drug.

Women with a high risk for developing breast cancer—for example, those with a family history of the disease or a previous tumor—can take certain medications that reduce the chance of developing breast cancer. Tamoxifen and raloxifene, 2 such drugs, are selective estrogen receptor modulators. These drugs work by blocking the effects of estrogen, a hormone that can promote the growth of breast cancer tumors.

To prevent breast cancer, at-risk women may take tamoxifen or raloxifene for 5 years. In rare cases, the drugs can cause dangerous side effects, including blood clots, strokes and endometrial cancer. Many women decide that the chance of success doesn’t outweigh the risk of side effects. If doctors could better predict a patient’s likely response to therapy, more women might benefit from this potentially life-saving strategy.

Dr. James N. Ingle of the Mayo Clinic led an international team—including scientists at the RIKEN Center for Genomic Medicine in Tokyo—to search for genetic markers that might predict treatment failure. They used data from long-running breast cancer prevention trials that involved more than 33,000 high-risk women. The scientists looked for genetic differences between women who developed breast cancer while on treatment and those who remained disease-free. They analyzed 500,000 genetic variations (single-nucleotide polymorphisms, or SNPs) scattered across the genome. The study was supported in part by NIH’s National Cancer Institute (NCI) and National Institute of General Medical Sciences (NIGMS).

In the July 2013 issue of Cancer Discovery, the team reported that 2 SNPs—one in a gene called ZNF423 and the other near a gene called CTSO—tended to differ between women who developed breast cancer while on treatment and those who remained cancer-free. Women who had only the beneficial versions of both SNPs were about 6 times less likely to develop breast cancer than women who had only the high-risk versions.

Neither ZNF423 nor CTSO had previously been associated with breast cancer or the response to these drugs. Further experiments revealed that both genes are involved in estrogen-induced expression of the BRCA1 protein, which is known to affect breast cancer risk.

“Our study reveals the first known genetic factors that can help predict which high-risk women should be offered breast cancer prevention treatment and which women should be spared any unnecessary expense and risk from taking these medications,” Ingle says. “We also discovered new information about how the drugs tamoxifen and raloxifene work to prevent breast cancer.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
Diagnosing Bacterial Infections in Blood Samples
Researchers have diagnosed a bacterial infection from a blood sample in infants.
Wednesday, August 24, 2016
Stem Cell Therapy Heals Injured Mouse Brain
A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage.
Tuesday, August 23, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
Friday, August 19, 2016
Exploring Ebola-Malaria Link
Data shows people infected with Ebola were more likely to survive if co-infected with malarial parasite.
Thursday, August 18, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Stem Cells Grown On Scaffold Mimic Hip Joint Cartilage
Adult fat-derived stem cells grown on a 3-D scaffold that mimicked a hip joint surface formed cartilage and maintained the correct shape.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Using Animal Embryos Containing Human Cells
With recent advances in stem cell and gene editing technologies, an increasing number of researchers are interested in growing human tissues and organs in animals by introducing pluripotent human cells into early animal embryos.
Monday, August 08, 2016
Zika Vaccine Testing in Humans
The NAAID has initiated a clinical trail of a vaccine candidate for the prevention of the Zika virus infection.
Thursday, August 04, 2016
Scientific News
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
Automated Patch Clamping Trends
Learn more about current practices, preferences and metrics in ion channel drug screening using APC technology.
Lab-on-a-Stick: Miniaturised Clinical Testing For Fast Detection Of Antibiotic Resistance
A portable power-free test for the rapid detection of bacterial resistance to antibiotics has been developed by academics at Loughborough University and the University of Reading.
Genetic Ancestry of Cultivated Strawberry Unravelled
UNH scientists constructed a linkage map of the seven chromosomes of the diploid Fragaria iinumae, which allows them to fill in a piece of the genetic puzzle about the eight sets of chromosomes of the cultivated strawberry.
Progress In Vaccination Against Vespid Venom
Researchers at the Helmholtz Zentrum München and the Technical University Munich have presented a method which facilitates a personalised procedure for wasp allergy sufferers.
New Drug Target for Inflammatory Disorders
Penn study finds enigmatic molecules maintain equilibrium between fighting infection and inflammatory havoc.
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!