Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First South American Plant for Purifying Soils Contaminated with Zinc and Cadmium

Published: Wednesday, July 03, 2013
Last Updated: Wednesday, July 03, 2013
Bookmark and Share
Gomphrena claussenii easily grows on contaminated soil near zinc mines and takes up large amounts of heavy metals.

Scientists from Wageningen (NL) and Lavras (Brazil) have found the first South American plant that can be used for purifying South American soils contaminated with the heavy metals zinc and cadmium.

Native plants are strongly preferred over exotic plants for this purpose as they reduce the risk of introducing an invasive species that can turn into a pest.

The plant, Gomphrena claussenii, easily grows on contaminated soil near zinc mines and takes up large amounts of heavy metals in its leaves and stems. This makes it quite suitable for the purifying of South American soils.

There are soils all over the world polluted with heavy metals - often through human activity. Cadmium in particular is very harmful to humans and animals and can cause cancer in high concentrations.

By growing plants that take up a lot of heavy metals, the contaminated soil can be cleaned in an eco-friendly way known as ‘phytoremediation.’

An important condition is that the plants used are able to grow well in the relevant soil, and are not themselves poisoned by the heavy metals.

Plants that can withstand heavy metals are most easily found by studying what already grows on contaminated soils, where plant species that can resist the pollution will win out over more sensitive plants.

However, a plant that is capable of growing in contaminated soil is not automatically a plant that stores heavy metals.

The scientists, led by Mina T. Villafort Carvalho from Wageningen University, part of Wageningen UR (University & Research Centre), discovered many plants of the species Gomphrena claussenii near a zinc mine in the state of Minas Gerais in Brazil.

They examined the plants in the lab, comparing them to the closely related Gomphrena elegans. "Our first question was to check that the G. claussenii plants did not suffer from high concentrations of heavy metals," Carvalho remembers. "The claussenii plants were indeed found to grow well, while G. elegans plants wasted away completely at high concentrations of zinc and cadmium."

Out of the two species, the G. claussenii plants were also observed to be better at taking up heavy metals than G. elegans plants - up to thirty times better for zinc and twenty times better for cadmium.

The leaves of the plants ultimately contained almost 1% zinc and more than 0.1% cadmium. The G. claussenii plants store the heavy metals proportionately more in the leaves and stems, and less in the roots, than the G. elegans plants.

Carvalho: "This is important as only the leaves and stems can be harvested. In other words, when the G. claussenii plants are removed much more zinc and cadmium is removed with them."

If the concentrations of heavy metals in the Gomphrena claussenii plants are compared with those in other plants suitable for the purification of contaminated soils, for example in Europe, then Gomphrena claussenii is not necessarily the best.

However, the plant grows fast and creates much more biomass than any other plants that take up zinc or cadmium - and therefore absorbs the most metal from the ground per plant.

Scientists estimate that removal of about 5-15 kg of cadmium per hectare per year is entirely realistic. This would cause many contaminants to be brought below minimum safety levels within five years.

According to the scientists, it would therefore be worthwhile to conduct practical research into the purifying effect of Gomphrena claussenii in South America.

In addition, further research might provide insight into the mechanism by which the plant absorbs the heavy metals without poisoning itself.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Large-Scale Edible Insect Farming Needed to Ensure Global Food Security
Scientists tackle problems of feeding the ever-increasing global population and providing them with enough animal protein.
Friday, May 10, 2013
Breeding potatoes with improved properties
It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries.
Tuesday, November 30, 2010
Organic Chickens Express More Cholesterol Gene
Study reveals that organic chickens have higher expressed genes involved in the creation of cholesterol,
Friday, January 22, 2010
Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!