Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Hijacking Stress Response in Cancer

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Scientists determine novel regulation of metabolic pathways in cancer.

Cancer cells have alteration in metabolic pathways as a result of oncogenes that promote tumor growth. NRF2 (nuclear factor erythroid-derived 2-related factor 2) works as a “master gene” that turns on stress response by increasing numerous antioxidants and pollutant-detoxifying genes to protect the lungs from variety of air pollutants such as diesel exhaust and cigarette smoke. However, researchers at the Johns Hopkins Bloomberg School of Public Health and others have found for the first time that NRF2 signaling also plays a role in the growth of tumor cells by altering metabolic pathways. The study is published in the July issue of the Journal of Clinical Investigation.

“Previously, we had reported that lung cancer cells, due to mutation in inhibitors of NRF2, hijack the stress response pathway to cause chemoresistance,” said Shyam Biswal, PhD, lead investigator of the study and professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health. “With our latest study, we show how the NRF2 pathway reprograms glucose metabolism, leading to increased energy production and tumor cell proliferation.  A better understanding of this process could lead to potential cancer treatments.”

The Johns Hopkins study demonstrated an important and previously unrecognized role for the NRF2 transcription factor in regulating cell metabolism. Specifically, NRF2 regulates genes miR-1 and miR-206 to “reprogram” glucose metabolism through PPP (pentose phosphate pathway) and the TCA (tricarboxylic acid) cycle, and fatty acid synthesis. The study demonstrated that these enzyme pathways, working together in specific patterns, stimulated tumor growth. The researchers validated their findings through a series of in vitro experiments and studies involving mice.

“Although Nrf2 has been extensively studied as a target for chemoprevention, recent work from our group and others have highlighted the idea of developing inhibitors of Nrf2 to inhibit cancer ” said Anju Singh, PhD, lead author of the study and assistant scientist in the Bloomberg School’s Department of Environmental Health Sciences. Using an integrated genomics and 13C-based metabolic flux system wide association analysis, we demonstrate that Nrf2 modulates glucose flux through PPP and TCA cycles in cancer cells. Biswal concludes that “This study reinforces the idea that targeting Nrf2 with small molecule inhibitors will starve the cancer cells by affecting metabolic pathways as well as decrease antioxidants and detoxification genes to intervene in therapeutic resistance.” Biswal’s group has been working with the National Center for Advancing Translational Sciences at NIH to develop Nrf2 inhibitors for cancer therapy.

“Transcription factor NRF2 regulated miR-1 and miR-206 to drive tumorigenesis” The study involved laboratories from the Johns Hopkins Center for Cancer Research, the National Cancer Institute, the Massachusetts College of Pharmacy, the Dana-Farber Cancer Institute, UCLA and the University of Maryland School of Medicine.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Wednesday, July 27, 2016
Developing a Better Flu Vaccine
By studying nasal spray vaccine in nasal tract cells, researchers say they can create a better vaccine that can work in the most vulnerable populations.
Wednesday, August 12, 2015
Drinking Raw Milk Dramatically Increases Risk for Foodborne Illness
Researchers discourage the consumption of raw milk, especially by children, pregnant women and the elderly.
Tuesday, March 31, 2015
Autism Speaks' First Philip and Faith Geier Autism Environmental Sciences Research Grant
This grant will be awarded annually to the outstanding researcher seeking to uncover the environmental factors whose interactions with genetic factors might be a cause of autism.
Thursday, January 26, 2012
Researchers use Mass Spectrometry to Detect Norovirus Particles
The process could aid biodefense in rapidly detecting dangerous pathogens.
Thursday, April 27, 2006
Researchers use Mass Spectrometry to Detect Norovirus Particles
Nanospray mass spectrometry was used to demonstrate the feasibility of detecting norovirus particles in the purified concentrates.
Monday, April 10, 2006
Scientific News
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
A Simple Tool for Clinical and Postmortem Toxicological Analysis
In this study, GC-MS is used for the determination of clozapine, and five antidepressants in human plasma, serum and whole blood.
Identification of Individual Red Blood Cells by Raman Microspectroscopy
In this study, Raman Microspectroscopy was used to identify individual red blood cells.
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
50-Year-Old Bacteria Could Be Alternative Treatment Option for Cancer
Researchers have developed a non-toxic strain of Salmonella to penetrate and target cancer cells.
Promising Blood Test Fails to Yield Clues About Best Strategies for Bladder Cancer Treatment
Penn Medicine research challenges previous findings on utility of neutrophil-to-lymphocyte ratio as a biomarker.
Robotic Cleaning Technique Could Automate Neuroscience Research
New robotic cleaning technique allows pipettes used in patch-clamping to be re-used up to 11 or more times.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos