Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tiny Tweezers Allow Precision Control of Enzymes

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Researchers at Arizona State University’s Biodesign Institute describe a pair of tweezers shrunk down to an astonishingly tiny scale.

When the jaws of these tools are in the open position, the distance between the two arms is about 16 nanometers – over 30,000 times smaller than a single grain of sand.

The group demonstrated that the nanotweezers, fabricated by means of the base-pairing properties of DNA, could be used to keep biological molecules spatially separated, or to bring them together as chemical reactants, depending on the open or closed state of the tweezers.

In a series of experiments, regulatory enzymes – central components in a host of living processes – are tightly controlled with the tweezers, which can switch reactions on or off depending on their open or closed condition.

“The work has important implications for regulating enzymatic function and may help usher in a new generation of nanoscale diagnostic devices as well as aid in the synthesis of valuable chemicals and smart materials,” Yan said.

Results of the new research appear in the current issue of the journal Nature Communications. Minghui Liu, a researcher in Biodesign’s Center for Single Molecule Biophysics and the Department of Chemistry and Biochemistry at ASU is the paper’s lead author. Other authors include Jinglin Fu, Yan Liu, Neal Woodbury from ASU, and Christian Hejesen and Kurt Gothelf from Aarhus University, Denmark.

Enzymes are large molecules responsible for thousands of chemical interactions essential to life. A primary role for enzymes is to accelerate or catalyze myriad chemical reactions involved in processes ranging from digestion to DNA synthesis. To do this, enzymes lower the activation energy – the minimum energy needed for chemical reactions to occur – thereby speeding up the rate of such reactions. Enzymes are critical factors for health and disease, helping cells maintain their delicate homeostasis. When mutations lead to over- or under-production in certain key enzymes, severe genetic diseases – some of them, lethal – can result.

Because of the central importance of enzymes for biological systems, researchers want to gain a better understanding of how normal enzymatic reactions occur and how they may go awry. Such knowledge may encourage the development of techniques to mimic cellular processes involved in enzyme regulation.

In the current study, the authors create a nanoscale tool designed to manipulate enzymatic reactions with fine-grained control. The group dubs their device a tweezer-actuated enzyme nanoreactor.

The clever design separates an enzyme and a cofactor essential for successful reactions on separate arms of the tweezer-like instrument. Enzyme function is inhibited when the tweezers are in their open position and the two molecules are held apart. Enzyme activation takes place when the tweezer prongs close, bringing enzyme and cofactor in contact. (The closing of the tweezers occurs when a specific DNA sequence is added, altering the thermodynamics of the system and causing a conformational change in the structure.)

The current study explores reactions in regulatory enzymes – multitasking entities that are important for modulating biochemical pathways. Regulatory enzymes, which can catalyze reactions over and over again, accomplish their feats by binding with biomolecular cofactors. (Hormone production and regulation are just one example of regulatory enzyme activity.)

In a series of experiments, the group was able to externally control the inhibition and activation of the enzyme through successive cycles. The authors stress that the nanoreactor tweezers could be used to regulate other types of enzymes and their control could be further refined by means of feedback and feed-forward loops.

Engineering nanostructures from the bottom up, using DNA as a construction material, affords researchers exacting control over the resulting geometry. Previously, Yan has created nanostructures in two- and three-dimensions, ranging from flat shapes to bowls, baskets, cages, Möbius strips and a spider-like autonomous walker.

In the tweezer design, a pair of 14 nm arms is connected at their ends by means of a 25 nucleotide single strand of DNA. This strand controls the opening and pinching of the tweezers, much the way a spring acts in a pair of gardening shears.

Two types of complementary sequence strands interact with this component, either forming a rigid DNA double helix, which supports the tweezers in their open position (set strands), or disabling the structural support and closing the tweezers (fuel strands).

Two techniques were used to measure and analyze the resulting structures with nanoscale precision: Fluorescence Resonance Energy Transfer (FRET) and Atomic Force Microscopy. Experiments demonstrated a high yield for enzyme-bound tweezers and successful switching between open and closed states was observed. The use of FRET allowed the process to be monitored in real time.

Lengthening the cofactor linker dangling from one of the tweezer’s arms enhanced successful opening and closing of the enzyme tweezers. Analysis revealed a 5-fold increase in enzymatic activity in the closed state, compared with the open state. The study also demonstrated durability in the tweezers, which were able to cycle between the open and closed positions nine times without losing structural integrity. The process was only limited by the accumulation of set strands and fuel strands.

Future work will explore similar responsive enzyme nanodevices capable of selective chemical amplification, with potentially broad impacts for medical diagnostics. Nanoreactors may also be applied as precision biocatalysts for the production of useful chemicals and smart materials.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Thursday, February 11, 2016
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Monday, December 21, 2015
Worldwide Resource for Exploring Genes' Hidden Messages
After a decade-long $3 billion international effort, scientists heralded the 2001 completion of the human genome as a moon landing achievement for biology and the key to finally solving intractable diseases like cancer.
Tuesday, December 15, 2015
Nanoparticles in Foods Raise Safety Questions
Nanoparticles can make foods like jawbreaker candies brighter and creamier and keep them fresh longer. But researchers are still in the dark about what the tiny additives do once inside our bodies.
Friday, October 23, 2015
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Wednesday, August 26, 2015
Rare Form: Novel Structures Built from DNA Emerge
DNA, the molecular foundation of life, has new tricks up its sleeve. The four bases from which it is composed can be artificially manipulated to construct endlessly varied forms in two and three dimensions.
Tuesday, July 21, 2015
Faster, Portable Microbial analysis
New miniaturized microbial analysis machine permits the detection of microbes in water, soil and the upper atmosphere.
Wednesday, May 27, 2015
Bold Steps Toward Engineering New Lungs
ASU researchers are working to improve aspects of lung engineering that may in the future contribute to providing a nearly limitless supply of donor organs, ideally matched to their recipients, or to repairing damaged lungs.
Wednesday, May 27, 2015
ASU Nano Facility Receives $1m Grant From National Science Foundation
NSF grant awarded to operate two secondary ion mass spectrometry laboratories as a national facility for earth sciences research.
Thursday, February 12, 2015
Fast, Low-cost DNA Sequencing Technology One Step Closer To Reality
ASU Regents' Professor Stuart Lindsay led a team of scientists from Arizona State University's Biodesign Institute and IBM's T.J. Watson Research Center in the development of a prototype DNA reader that could make whole genome profiling an everyday practice in medicine.
Wednesday, November 26, 2014
Major Advance in Human Proteins
The paper, “Serial femtosecond crystallography of G-protein-coupled receptors,” reports the successful imaging, at room temperature, of the structure of GPCR with the use of an x-ray free-electron laser.
Monday, December 23, 2013
Vaccine Technology Takes Dramatic Step Forward
New and increasingly sophisticated vaccines are taking aim at a broad range of disease-causing pathogens, targeting them with greater effectiveness at lower cost and with improved measures to ensure safety.
Wednesday, November 07, 2012
Carbon Nanotubes Show Promise for High-Speed Genetic Sequencing
Faster sequencing of DNA holds potential for personalized diagnosis and customized treatment based on each individual's genomic makeup.
Monday, January 04, 2010
Dissected Brains of Fruit Flies Provide Clues in Autism Research
A new bioassay methodology identifies drugs that may increase the cognitive functionality of children with mental retardation or autism.
Thursday, January 29, 2009
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!