Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Finds New Genetic Links to Juvenile Arthritis

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
New research has identified 14 genes linked to juvenile idiopathic arthritis (JIA), the most common type of arthritis affecting children.

The new study brings the number of confirmed genes in JIA to 17 and represents an important advance toward better understanding and treatment of JIA.

Published in Nature Genetics, the international study used technology called the Immunochip array to analyze DNA samples from 2,816 children with JIA collected at more than 40 pediatric rheumatology clinics in the United States and Europe and 13,000 healthy controls to look for differences in genes, said Susan Thompson, Ph.D., a leader of the study and researcher in the Division of Rheumatology at Cincinnati Children's Hospital Medical Center. Carl D. Langefeld, Ph.D., a biostatistician at Wake Forest University School of Medicine in Winston-Salem, NC, led the team of statisticians completing this large analysis. In addition to the 14 new genes, the analyses confirmed three previously discovered genes and suggested that another 11 genetic regions might be involved in the disease.

JIA, an autoimmune disease, has several different, but related, forms. The genes studied were from children with two common JIA subtypes — polyarticular and oligoarticular. Many of the implicated genes are involved in the development, activation or differentiation of T cells — a type of white blood cell that identifies, attacks and rids the body of infectious agents.

Prior to this study only three genes — the human leukocyte antigen (HLA) region, PTPN22 and PTPN2 — had been shown to be involved in JIA, a disease that is believed to have both genetic and environmental components. The confirmation of those three genes, plus the finding of numerous others could have two important implications, said Thompson.

“If we can find a novel disease mechanism, that can inform drug design,” she said. Also, by comparing genes, scientists might further define disease subtypes, which could help doctors determine which children are most likely — or unlikely — to respond to a particular treatment before they try it. This knowledge, she said, could help with the development of treatment protocols.

The study, which took two years to complete and is the largest collaborative study of JIA to date, has opened the door to other collaborations that likely will provide more clues about JIA, according to Thompson. The next step, she said, is an analysis of DNA from 1,500 more patients to help understand or confirm the role of the 11 additional genetic regions identified as having a possible connection in the current study.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!