Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Improving Gene Therapy for Eye Diseases

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers developed a less invasive technique that delivers genes across the retinas of mouse and monkey eyes.

With further development, the method might be used in people to treat inherited diseases that cause the retina to degenerate and impair sight.

The retina is the light-sensitive tissue at the back of the eye. It converts light into electrical impulses that are sent to the brain through the optic nerve, allowing us to see.

Certain inherited diseases, such as Leber congenital amaurosis (LCA), cause the retina to degenerate and lead to blindness. Scientists have made progress using gene therapy to treat these eye diseases, and several clinical trials are underway. However, the current therapies require inserting a needle through the retina and injecting the engineered virus behind the retina. The procedure can disrupt fragile diseased retinas and delivers the therapy to only a limited region.

A research team led by Drs. John G. Flannery and David V. Schaffer at the University of California, Berkeley, set out to develop an improved approach. The virus typically used for gene therapy in the eye is adeno-associated virus (AAV). This harmless virus can’t normally get through the layers of retinal cells to reach affected photoreceptor cells when injected into the vitreous humor—the more easily accessible gel-like fluid at the center of the eye. The scientists devised an approach to engineer variants of the virus that could get through the retina's layers. They described their work, which was funded in part by NIH’s National Eye Institute (NEI) and the NIH Common Fund, on June 12, 2013, in Science Translational Medicine.

The researchers injected millions of genetically engineered variations of AAVs into the vitreous humor of transgenic mice and selected the variants that reached photoreceptor cells in the retina. After 3 rounds of selection, the scientists identified dozens of AAV variants capable of moving from the vitreous humor into the retina.

The most effective modified AAV, called 7m8, was used for further study. When injected into the vitreous humor of adult mice, 7m8 delivered genes throughout the retina and the optic nerve, but not into surrounding tissues outside of the eye. Using a more specific gene promoter restricted gene expression to photoreceptor cells.

The team tested 7m8 in mouse models of 2 inherited diseases in which mutated genes lead to retinal degeneration. In X-linked retinoschisis (XLRS), mutations in the gene encoding the retinoschisin protein cause splitting of the retina. LCA type 2 is caused by mutations in the RPE65 gene. Injections of 7m8 carrying functional copies of these genes into the vitreous humor improved vision in both mouse models.

The new technique also successfully delivered genes across the retina of adult macaques. The team is now planning to perform additional research to prepare the 7m8 AAV for study in humans. They hope to soon head into early clinical trials.

“Building upon 14 years of research,” Schaffer says, “we have now created a virus that you can inject into the liquid vitreous humor inside the eye and it delivers genes to a very difficult-to-reach population of delicate cells in a way that is surgically much less invasive and safer.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Friday, October 21, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Thursday, October 20, 2016
Untangling Cause Of Memory Loss In Neurodegenerative Diseases
NIH-funded mouse study identifies a possible therapeutic target for a family of disorders.
Tuesday, October 18, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
Scientists at NIH and Emory Achieve Sustained SIV Remission in Monkeys
The finding suggest that the immune systems of these animals are controlling SIV replication in the absence of antiretroviral therapy.
Friday, October 14, 2016
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
Thursday, October 13, 2016
Visual Cortex Plays Role in Plasticity of Eye Movement Reflex
Researchers at NIH have found that the visual cortex region of the brain known to process sensory information plays a vital role in promoting the plasticity of innate, spontaneous eye movements.
Thursday, October 13, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
Cone Snail Venom Reveals Insulin Insights
Researchers found that a fast-acting insulin from the cone snail can bind and activate the human insulin receptor.
Wednesday, October 05, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Targeting Cardiovascular Disease Risk Factors May be Important Across a Lifetime
The study suggests efforts to prevent risk factors should extend to those older than 65.
Tuesday, October 04, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Mapping Serotonin in the Living Brain
Imaging technique that creates a 3D video of serotonin transport could aid antidepressant development.
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos