Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Possible Goal for New Tuberculosis-Vaccine Identified

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
A new study shows for the first time the essential role of the molecule SOCS3 in the control of Tuberculosis.

This could have impact on the future development of a vaccine.

Tuberculosis is sometimes perceived as a feared killer of the past but is still a dreadful disease of mankind. One third of the world population is infected with the bacteria Mycobacterium tuberculosis that causes the disease. However, Tuberculosis is manifested only in approximately 10 percent of those infected. Still, about 2 million Tuberculosis patients die every year worldwide.

Mycobacterium tuberculosis multiplies inside white blood cells known as macrophages. In infected people who don't develop the Tuberculosis, the immune system either the bacteria or impairs bacterial multiplication. The exact mechanisms behind this are not known in detail, hampering the development of effective vaccines and treatments of the disease. Why the disease is manifested in some individual, but not in others, is not completely understood.

The recent study shows that a molecule called SOCS3 is required for control of the infection. The discovery was done using an experimental infection of mice genetically modified so that they do not express SOCS3 in different immune cells. These mice were dramatically susceptible to the infection with Mycobacterium tuberculosis.

"Like a soldier with two guns the molecule SOCS3 engages in different ways in the combat against Mycobacterium tuberculosis. We were stunned by the fact that the same molecule independently controls diverse mechanisms in different cell types," says Martin Rottenberg, from the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet.

The control of Tuberculosis is hampered by the appearance of antibiotic-resistant strains. Moreover, the Tuberculosis vaccine, developed almost 100 years ago, shows low efficiency against the most common pulmonary disease. An improved understanding of how our immune responses control the infection might be used for the design of new vaccines.

"We speculate that SOCS3 could be a new target for vaccines to improve the protection against Tuberculosis," says Martin Rottenberg.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Complex Grammar of the Genomic Language
A new study from Karolinska Institutet shows that the ‘grammar’ of the human genetic code is more complex than that of even the most intricately constructed spoken languages in the world.
Thursday, November 12, 2015
New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Stem Cells from Nerves Forming Teeth
Findings published in the scientific journal Nature.
Wednesday, July 30, 2014
Different Cell Mechanisms Behind Regenerated Limbs
Scientists at Karolinska Institutet have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts.
Tuesday, November 26, 2013
New European Vaccine Initiative
Leading organisations have joined forces to rapidly assess and communicate the benefits and risks of vaccines.
Tuesday, November 26, 2013
Synthetic mRNA can Induce Self-Repair and Regeneration of the Infarcted Heart
A team of scientists has instructing injured hearts in mice to heal by expressing a factor that triggers cardiovascular regeneration driven by native heart stem cells.
Monday, September 16, 2013
Technological Breakthrough Paves the Way for Better Drugs
Researchers have developed the first method for directly measuring the extent to which drugs reach their targets in the cell.
Monday, July 08, 2013
Trackable Drug-Filled Nanoparticles - a Potential Weapon against Cancer
Tiny particles filled with a drug could be a new tool for treating cancer in the future.
Monday, March 04, 2013
Learning the Alphabet of Controlling Gene Expression
Scientists at Karolinska Institutet have made a large step towards the understanding of how human genes are regulated.
Monday, January 21, 2013
New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
The 2012 Nobel Prize in Physiology or Medicine
The Nobel Assembly at Karolinska Institutet has decided to award the Nobel Prize jointly to John B. Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent.
Tuesday, October 09, 2012
Possible New Therapy for the Treatment of a Common Blood Cancer
Research from Karolinska Institutet shows that sorafenib, a drug used for advanced cancer of the kidneys and liver, could also be effective against multiple myeloma.
Friday, September 07, 2012
New Findings on the Formation of Body Pigment
The skin's pigment cells can be formed from completely different cells than has hitherto been thought, a new study from the Swedish medical university Karolinska Institutet shows. The results, which are published in the journal Cell, also mean the discovery of a new kind of stem cell.
Thursday, October 22, 2009
Cell-IQ® Cell Imaging System Aids Fertility Research at Karolinska
Cell-IQ® platform helps investigate mechanisms of infertility and oocyte maturation, and for characterization of human embryonic stem cell lines.
Thursday, July 09, 2009
Identical Twins Not as Identical as Believed
The finding published by American, Swedish, and Dutch scientists may be of great significance for research on hereditary diseases and for the development of new diagnostic methods.
Tuesday, February 19, 2008
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos