Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Activated Blood Platelets Enable Cancer Cells to Penetrate Blood Vessels

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
In the majority of cases, metastases formation develops via the blood vascular system.

The blood platelets thereby provide invaluable help to the tumour cells in penetrating new organs. Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim have identified the P2Y2 receptor molecule on the cells of the blood platelet wall as the gateway that allows the cancer cells to enter the organs. They now aim to prevent the formation of metastases through the targeted blocking of this key molecule.

Blood platelets play a crucial role in haemostasis. When a blood vessel is injured, the platelets ensure the rapid initial closure of the wound. To do this, they quickly adhere to the wall of the injured blood vessel, thereby attracting more platelets which aggregate and form a plug that blocks the opening in the blood vessel wall. To enable the optimal functioning of this “rapid reaction force” in the event of injury to blood vessel walls, the blood platelets release a veritable shower of signal molecules. The cells communicate with each other in this manner. Moreover, the platelets, which normally circulate in the blood stream in an inactive state, are activated in a matter of seconds and fundamentally alter their characteristics.

Malignant tumours, which often spread to previously unaffected organs through the blood stream, use the blood platelets to penetrate the hermetically-sealed blood vessel wall. “It has long been known that metastasising tumour cells are capable of establishing close contact with blood platelets and activating them. Animal experiments have shown that tumour cells form far fewer metastases in the absence of blood platelets,” says Stefan Offermanns, Director of the Department of Pharmacology at the Bad Nauheim-based Max Planck Institute. In addition, clinical studies have shown that patients who receive long-term treatment with platelet inhibitors like acetylsalicylic acid present a lower risk of developing metastasising tumours.

Offermanns’ Research Group has succeeded in explaining exactly how this process unfolds. Activated blood cells release a large amount of molecules including adenosine triphosphate (ATP). The scientists observed in cell cultures that blocking ATP release from blood platelets resulted in a significant reduction in the number of tumour cells migrating through the endothelial cells in the blood vessel wall. “We succeeded in demonstrating the same phenomenon in experiments on mice, in which the release of ATP from blood platelets was blocked. In this case too, far fewer tumour cells slipped through the endothelial barrier and fewer metastases formed,” says Dagmar Schuhmacher, one of the study’s first authors.

However, what exactly happens in the blood vessel wall that enables the tumour cells to penetrate it? The Max Planck researchers were able to demonstrate that ATP from the blood platelets binds with a particular receptor called P2Y2. This docking site is located on the surface of the endothelial cells. “When ATP binds to these receptors, small openings form between the individual endothelial cells. The tumour cells exit the blood vessel through these openings and migrate into the organ,” explains Boris Strilic, also a first author of the study.

With the identification of this hitherto unknown role of blood platelets in metastases formation, the researchers hope to have found possible starting points for a new therapeutic approach. “We will now test whether specific blockers for the P2Y2 receptor or substances that inhibit the release of ATP from blood platelets can suppress tumour cell metastasis in different animal models,” says Offermanns. The specific challenge the scientists must overcome here is to avoid suppressing the actual job of the platelets, namely haemostasis, in the process. If they manage to do this, a better treatment for malignant tumours may become available in the future.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos