Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Identify Gene that Controls Aggressiveness in Breast Cancer Cells

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
Researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs).

Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down.

The researchers, whose findings are published this week in the journal Cell, report that the ZEB1 gene is held in a poised state in basal non-CSCs, such that it can readily respond to environmental cues that consequently drive those non-CSCs into the dangerous CSC state. Basal-type breast carcinoma is a highly aggressive form of breast cancer. According to a 2011 epidemiological study, the 5-year survival rate for patients with basal breast cancer is 76%, compared with a roughly 90% 5-year survival rate among patients with other forms of breast cancer.

“We may have found a root source, maybe the root source, of what ultimately determines the destiny of breast cancer cells—their future benign or aggressive clinical behavior,” says Whitehead Founding Member Robert Weinberg, who is also a professor of biology at MIT and Director of the MIT/Ludwig Center for Molecular Oncology.

Transcription factors are genes that control the expression of other genes, and therefore have a significant impact on cell activities. In the case of ZEB1, it has an important role in the so-called epithelial-to-mesenchymal transition (EMT), during which epithelial cells acquire the traits of mesenchymal cells. Unlike the tightly-packed epithelial cells that stick to one another, mesenchymal cells are loose and free to move around a tissue. Previous work in the Weinberg lab showed that adult cancer cells passing through an EMT are able to self-renew and to seed new tumors with high efficiency, hallmark traits of CSCs.

Other earlier work led by Christine Chaffer, a postdoctoral researcher in the Weinberg lab, demonstrated that cancer cells are able to spontaneously become CSCs. Now Chaffer and Nemanja Marjanovic have pinpointed ZEB1, a key player in the EMT, as a gene critical for this conversion in breast cancer cells.

Breast cancers are categorized into at least five different subgroups based on their molecular profiles. More broadly these groups can be subdivided into the less aggressive ‘luminal’ subgroup or more aggressive ‘basal’ subgroup. The aggressive basal-type breast cancers often metastasize, seeding new tumors in distant parts of the body. Patients with basal breast cancer generally have a poorer prognosis than those with the less aggressive luminal-type breast cancer.

Chaffer and Marjanovic, a former research assistant in the Weinberg lab, studied non-CSCs from luminal- and basal-type cancers and determined that cells from basal cancers are able to switch relatively easily into CSC state, unlike luminal breast cancer cells, which tend to remain in the non-CSC state.

The scientists determined that the difference in ZEB1’s effects is due to the way the gene is marked in the two types of cancers. In luminal breast cancer cells, the ZEB1 gene is occupied with modifications that shut it down. But in basal breast cancer cells, ZEB1’s state is more tenuous, with repressing and activating markers coexisting on the gene. When these cells are exposed to certain signals, including those from TGFß, the repressive marks are removed and ZEB1 is expressed, thereby converting the basal non-CSCs into CSCs.

So what does this new insight mean for treating basal breast cancer?

“Well, we know that these basal breast cancer cells are very plastic and we need to incorporate that kind of thinking into treatment regimes,” says Chaffer. “As well as targeting cancer stem cells, we also need to think about how we can prevent the non-cancer stem cells from continually replenishing the pool of cancer stem cells. For example, adjuvant therapies that inhibit this type of cell plasticity may be a very effective way to keep metastasis at bay.”

Marjnaovic agrees but cautions that the model may not be applicable for every cancer.

“This is an example of how adaptable cancer cells can be,,” says Marjanovic, who is currently a research assistant at the Broad Institute. “We have yet to determine if ZEB1 plays a similar role in all cancer types, but the idea that cancer cells reside in a poised state that enables them to adapt to changing environments may be a mechanism used by many cancers to increase their aggressiveness.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Revising the Meaning of “Prion”
Scientists are redefining prions, a protein capable of passing heritable information from cell to cell.
Thursday, October 06, 2016
Genome-Wide Screen Reveals Parasitic Infection Mechanisms
Researchers have conducted the first genome-wide screen in Apicomplexa that sheds light on parasite genomes.
Friday, September 02, 2016
Absolute Quantification of Mitochondrial Metabolites
Scientists have developed a method to quickly isolate and systematically measure metabolite concentrations within mitochondria.
Friday, September 02, 2016
Identifying a Genetic Mutation Behind Sporadic Parkinson’s Disease
Using a novel method, Whitehead Institute researchers have determined how a non-coding mutation identified in genome-wide association studies (GWAS) can contribute to sporadic Parkinson’s disease (PD).
Friday, April 22, 2016
3D Map of the Human Genome
Whitehead Institute researchers have created a map of the DNA loops that comprise the three dimensional (3D) structure of the human genome and regulate gene expression in human embryonic stem (ES) cells and adult cells.
Monday, December 14, 2015
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Friday, September 25, 2015
Imaging Immunity
Noninvasive imaging of immune system detects tumors, could monitor therapeutic response.
Wednesday, April 22, 2015
Yeast, Human Stem Cells Drive Discovery of New Parkinson’s Disease Drug Targets
Using a discovery platform whose components range from yeast cells to human stem cells, scientists have identified a novel Parkinson’s disease drug target.
Wednesday, October 30, 2013
Super-Enhancers Seen as ‘Rosetta Stone’ for Dialog Between Genes and Disease
Regulatorsthat control cell identity found to be enriched in mutated regions of genome.
Monday, October 21, 2013
Sex Chromosome Shocker: The “Female” X a Key Contributor to Sperm Production
Painstaking new analysis of the genetic sequence of the X chromosome reveals that large portions of the X have evolved to play a specialized role in sperm production.
Tuesday, July 23, 2013
Thwarting Protein Production Slows Cancer Cells’ Malignant March
Protein production or translation is tightly coupled to a highly conserved stress response that cancer cells rely on for survival and proliferation.
Tuesday, July 23, 2013
Precision Gene Targeting in Stem Cells Corrects Disease-Causing Mutations
Whitehead Institute researchers manipulate targeted genes in both human embryonic stem cells and induced pluripotent stem cells.
Tuesday, July 19, 2011
Whitehead Member Rudolf Jaenisch Honored for Groundbreaking Stem Cell Research
Israel’s Wolf Foundation has named Whitehead Institute Founding Member Rudolf Jaenisch a recipient of the prestigious 2011 Wolf Prize in Medicine.
Friday, February 18, 2011
Embryonic Stem Cells Reveal Oncogene's Secret Growth Formula
Researchers describes a pausing step in the transcription process that serves to regulate expression of as many as 80% of the genes in mammalian cells.
Monday, May 03, 2010
Chimp and Human Y Chromosomes Evolving Faster than Expected
Whitehead Institute researchers have found considerable differences in the genetic sequences of the human and chimpanzee Y Chromosomes.
Wednesday, January 20, 2010
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Biological Link between the Gut Microbiome and Parkinson’s Disease
The findings suggest that targeting the gut microbiome may provide a new approach for diagnosing and treating Parkinson’s disease.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
RNAi Activated in Response to Influenza
Discovery could lead to better ways of combating serious infections, including Ebola and Zika.
Allen Institute Releases Gene Edited Human Stem Cell Lines
The Allen Cell Collection, a publicly available collection of gene edited pluripotent stem cells, has been made available by the Allen Institute.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!