Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Detecting DNA in space

Published: Tuesday, July 09, 2013
Last Updated: Tuesday, July 09, 2013
Bookmark and Share
Researchers, in a step toward analyzing Mars for signs of life, find that gene-sequencing chip can survive space radiation.

If there is life on Mars, it’s not too farfetched to believe that such Martian species may share genetic roots with life on Earth.

More than 3.5 billion years ago, a blitz of meteors ricocheted around the solar system, passing material between the two fledgling planets. This galactic game of pingpong may have left bits of Earth on Mars, and vice versa, creating a shared genetic ancestry between the two planets.

Such a theory holds great appeal for Christopher Carr, a research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences. Working with Gary Ruvkun at Massachusetts General Hospital (MGH) and Maria Zuber, the E.A. Griswold Professor of Geophysics and MIT’s vice president for research, Carr is building a DNA sequencer that he hopes will one day be sent to Mars, where it can analyze soil and ice samples for traces of DNA and other genetic material.

Now in a step toward that goal, Carr and colleagues at MIT, Harvard University and MGH have exposed the heart of their tool — a DNA-sequencing microchip — to radiation doses similar to those that might be expected during a robotic expedition to Mars. After exposure to such radiation — including protons and heavy ions of oxygen and iron — the microchip analyzed a test strain of E. coli, successfully identifying its genetic sequence.

Carr says the group’s results show the microchip can survive up to two years in space — long enough to reach Mars and gather data there for a year and a half.

“Over time on Mars, a chip’s performance could degrade, reducing our ability to get sequence data. The chip might have a higher error rate, or could fail to function at all,” Carr says. “We did not see any of these issues [in our tests]. … Once this chip has been through two years of a Mars mission, it still will be able to sequence.”

The researchers reported their results in a paper published in the journal Astrobiology.

Simulating a solar storm

Any life on Mars, past or present, would have to be extremely resilient: The planet’s atmosphere, made mostly of carbon dioxide, is 100 times thinner than Earth’s, providing very little warmth. Temperatures can plummet to minus 195 degrees Fahrenheit.

On the other hand, the deep subsurface of Mars is not much different from that of Earth, which is known to harbor microbes. Results from the Curiosity rover, currently exploring Mars, suggest that beneath the planet’s surface lies a dry and cold — but otherwise likely benign — environment, with all the major elements required for life.

To detect such subterranean life, a DNA-sequencing instrument on the surface of Mars would have to withstand temperature swings and steady exposure to space radiation. Such exposure could cause chips to report false positives, for instance, or to record extra bases in DNA sequences.

Carr and his colleagues tested the effects of Mars-like radiation on a commercially available sequencing chip. The tested chip contains 1.3 million microwells, each of which can hold a single bead containing an amplified fragment of DNA that can be used to generate a DNA sequence.

To test the chip’s resilience to radiation, the team traveled to NASA’s Space Radiation Laboratory at Brookhaven National Laboratory. Once there, the researchers, working with a total of 40 microchips, first performed electrical testing on 20 chips — a process by which a chip’s gain, voltage and wells are calibrated to verify that the parts are working properly.

Following electrical testing, Carr exposed the chips to various levels of radiation, using a linear accelerator and an electron-beam ion source. The highest radiation dose sustained by the chips was more than they would experience during a two-year mission to Mars.

After the chips were irradiated, the team once again tested the electrical performance of each, and found very little change in the chips’ functioning.

Life on Mars and beyond

In a second round of testing, Carr exposed the remaining 20 microchips to the same radiation levels as the first batch, then took the chips back to his lab and loaded each with DNA fragments from E. coli. Despite their exposure to radiation, the chips were able to analyze DNA and correctly identified the bacterial sequences.

“These chips are great candidates to do sequencing on Mars without any modifications that we know of right now,” Carr says. “We essentially see no impact from radiation. That was a critical thing for us to show.”

Chris McKay, a planetary scientist with the Space Science Division of NASA’s Ames Research Center, says a radiation-resilient DNA-sequencing chip, such as the one used in this experiment, is a promising candidate for future life-detecting missions to Mars and other planets.

The paper by Carr and colleagues “reports on an important step forward on the development of DNA sequencers for planetary missions,” says McKay, who did not contribute to the research. “In addition to being part of the search for life on other worlds, the DNA searcher would be relevant to assessing sites for human exploration.”

In previous studies, Carr and his colleagues have found that the reagents used in DNA sequencing can also withstand similar radiation levels. Taken together, Carr says, the results suggest genetic sequencing may be a viable process in space.

Beyond Mars, Carr says, DNA sequencing may be of interest in places such as Jupiter’s moon Europa, where liquid oceans may harbor signs of life. More promising, Carr says, are places like Enceladus, a moon of Saturn that is thought to be in a potential habitable zone, and that has much less intense radiation.

“I do think we’ll see DNA sequencing in space at some point,” Carr says. “Hopefully we’ll get a chance to be a part of that.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Recruiting The Entire Immune System To Attack Cancer
Stimulating both major branches of the immune system halts tumor growth more effectively.
Wednesday, April 15, 2015
Sensor Detects Spoiled Meat
Tiny device could be incorporated into “smart packaging” to improve food safety.
Wednesday, April 15, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!