Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First IVF Baby with New Embryo Screening Technique

Published: Tuesday, July 09, 2013
Last Updated: Tuesday, July 09, 2013
Bookmark and Share
The method uses the latest DNA sequencing techniques and aims to increase IVF success rates while being more affordable.

Dr Dagan Wells of Oxford University led the international team which has shown how 'next-generation sequencing' can be used to pick the embryos created by IVF that are most likely to lead to successful pregnancies.

The approach can identify embryos with the correct number of chromosomes and may cut hundreds of pounds off the cost of embryo screening, Dr Wells says, which currently adds £2000–£3000 to IVF treatments.

He will outline the development today at the European Society of Human Reproduction and Embryology's annual meeting in London.

The work was a collaborative effort. It received significant support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, a partnership between Oxford University Hospitals NHS Trust and the University of Oxford. The collaboration also involved industrial partners, in particular the medical diagnostic company Reprogenetics UK.

The majority of embryos produced by IVF aren't able to lead to successful pregnancies, and scientists have sought to find ways of identifying the embryos that should be implanted to give the greatest chance of success.

How an embryo looks and how it develops during the first few days of life give some indication of its viability. However, many embryos turn out to have the wrong number of chromosomes – the packages of DNA we inherit from our parents. Having an incorrect number of chromosomes usually prevents embryos from producing a pregnancy. Until recently, such abnormalities have been hard to detect as they do not affect the appearance of embryos under the microscope.

Dr Wells, of the Institute for Reproductive Sciences in the Nuffield Department of Obstetrics and Gynaecology, explained: 'Many of the embryos produced during infertility treatments have no chance of becoming a baby because they carry lethal genetic abnormalities. Next-generation sequencing improves our ability to detect these abnormalities and helps us identify the embryos with the best chances of producing a viable pregnancy. Potentially, this should lead to improved IVF success rates and a lower risk of miscarriage.'

Recently, a number of trials of various chromosome screening methods have shown that they can improve IVF success rates by around 30%. But the costs of these genetic tests remain a barrier to their widespread use.

This led Dr Wells and colleagues to look at the possibilities of using the latest in DNA sequencing technology to screen embryos for chromosomal abnormalities. In recent years, next-generation sequencing has seen massive reductions in costs, a trend that looks set to continue.

Dr Wells said: 'Results from randomised clinical trials carried out during the last year have suggested that most IVF patients would benefit from embryo chromosome screening. However, the costs of these genetic tests are relatively high, putting them beyond the reach of many patients. Next-generation sequencing could make chromosome testing more widely available, improving access by cutting the costs.'

Next-generation sequencing has been revolutionising research and clinical genetics in many areas, generating vast quantities of data. But it had not yet been applied to embryo screening because of the challenge of applying the techniques to DNA from a single cell. A single cell is all that can be safely taken from a few-day-old embryo for testing.

The researchers' approach involves sequencing DNA from multiple embryos all at the same time. Short DNA tags or 'barcodes' added to the genetic material from each individual embryo mean that the results could be identified uniquely and mapped back to the right embryo.

The researchers explicitly do not read out the whole DNA code for each embryo. They deliberately limit sequencing to around 2% of the embryo's DNA, more than enough to determine the number of chromosomes present, but insufficient to reveal the status of individual genes.

In the future, it should be possible to use the approach to check for chromosomal abnormalities and any serious inherited disorders at the same time, the researchers believe. Dr Wells said: 'Next-generation sequencing provides an unprecedented insight into the biology of embryos.'

An initial validation study showed extremely high accuracy rates for the DNA sequencing approach, says Dr Wells. The study involved seeing whether known chromosome abnormalities, gene defects or mitochondrial DNA mutations could be identified in small numbers of cells from laboratory cell-lines. And cells from 45 embryos, previously shown to be abnormal with another testing technique, were reanalysed by next-generation sequencing where the researchers were 'blinded' to the abnormalities present.

Dr Wells' team then worked with the Main Line Fertility Clinic in Pennsylvania, USA, and the fertility clinic of New York University in New York City to use the method in assessing the chromosomes of embryos produced by two couples undergoing IVF.

Cells sampled from seven five-day-old embryos (known as 'blastocysts') were screened, revealing three chromosomally healthy blastocysts for the first couple and two for the second.

In both cases, transferring one of these embryos led to a healthy pregnancy. The first pregnancy saw a healthy baby boy born in June. The second pregnancy is progressing well and is due to deliver in the next couple of months.

'Our next step is a randomised clinical trial to confirm the true efficacy of this approach,' said Dr Wells. He hopes that might start later this year through the Oxford Fertility Unit and the Lister Fertility Clinic in London.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomarker Discovery Offers Hope For New TB Vaccine
A team of scientists led by Oxford University have made a discovery that could improve our chances of developing an effective vaccine against Tuberculosis.
Tuesday, April 12, 2016
Novel Collagen Fingerprinting Identifies A Neanderthal
Study from the universities of Oxford and Manchester uses ZooMS technique to identify traces of an extinct human.
Friday, April 01, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
HIV Keeps Growing, Even When Undetectable
A team of international researchers including scientists from Oxford University has found that HIV is still replicating in lymphoid tissue even when it is undetectable in the blood of patients on antiretroviral drugs.
Friday, January 29, 2016
Bacterial Superglue for Faster Vaccine Development
An interdisciplinary team of Oxford University researchers has devised a new technique to speed up the development of novel vaccines.
Wednesday, January 20, 2016
Millions at Risk of Little Known Deadly Tropical Disease
Melioidosis, a difficult to diagnose deadly bacterial disease, is likely to be present in many more countries than previously thought.
Tuesday, January 12, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Seeking the Right Prescription in Fight Against Antibiotic Resistance
Researchers at the University of Oxford have received funding to look at ways to improve the prescribing of antibiotics.
Monday, November 23, 2015
£17M Project Launched to Develop HIV Vaccine
A new €23 million (£17 million) initiative to accelerate the search for an effective HIV vaccine has begun.
Wednesday, November 11, 2015
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Tuesday, November 10, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
Microbe Artwork Shows The Limits Of Antibiotics
An Oxford University research fellow has been creating art using bacteria found in the human gut and harvested from faecal samples.
Tuesday, September 29, 2015
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!