Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Prenatal Maternal Antibodies Affect Child Development

Published: Wednesday, July 10, 2013
Last Updated: Wednesday, July 10, 2013
Bookmark and Share
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.

The researchers said that the highly specific immunoglobulin-G (IgG) autoantibodies cross the placenta during pregnancy to impact fetal brain development, resulting in a form of autism that the researchers now are calling maternal antibody-related (MAR) autism. The researchers said that MAR autism cases could represent as much as 23 percent of all autism cases.

The research is published online today in Translational Psychiatry, a Nature journal.

During gestation, maternal IgG antibodies normally cross the placenta and protect the fetus, conferring the mother's immunities to the developing child. However, in addition to protective antibodies, autoantibodies that react to fetal proteins can also cross the placenta, essentially attacking fetal tissue.

The current study is an extension of an earlier study conducted in 2008. It explores the effects of the autism-specific IgG antibodies in a non-human primate model. Non-human primates live in complex social groups and use many forms of social communication. In addition, portions of the human brain, such as the prefrontal cortex, are poorly developed in other animal models, such as rodents, but are highly developed in the rhesus monkey.

For the study, a group of pregnant female monkeys were exposed to IgG purified from mothers of children with autism that exhibited fetal brain reactivity - the IgG-ASD group; a second group of pregnant female monkeys received IgG antibodies from the mothers of typically developing children. The third group included untreated animals that did not receive antibodies.

The study's lead researcher is Melissa D. Bauman, UC Davis assistant adjunct professor in the UC Davis Department of Psychiatry and Behavioral Sciences, and a faculty member at the MIND Institute. To evaluate development in the IgG-ASD offspring, Bauman and her colleagues carried out a comprehensive evaluation of behavioral development and periodically conducted longitudinal magnetic resonance imaging (MRI) of the monkeys' brain development during the first two years of life.

"The offspring of IgG-ASD antibody treated mothers consistently deviated from species-typical behavioral development of young rhesus monkeys," Bauman said. Early in development, the monkey mothers treated with IgG-ASD antibodies were much more protective of their offspring. For example, the IgG-ASD treated mothers more frequently approached and contacted their infants and remained in close proximity to them.

The mothers may have detected behavioral abnormalities in their IgG-ASD offspring that were so subtle that they escaped the researchers' attention, Bauman said. "The heightened protectiveness of the monkey mother's was observed only when other animals were present, suggesting that the mothers perceived a greater risk to their IgG-ASD treated infants," she said.

Other alterations in behavior were observed as the animals matured. For example, the offspring of the IgG-ASD antibody-treated animals more frequently approached other infants in their rearing group. "Even more strikingly, as they grew older, the IgG-ASD offspring increased their approaches to unfamiliar peers," she said. "Inappropriately approaching a novel animal is highly unusual and potentially dangerous for young rhesus monkeys."

Social interactions such as grooming or playing often occur when a young rhesus monkey approaches a peer. Despite the higher frequency of their approaches, the IgG-ASD offspring did not interact socially with peers more often than did the offspring whose mothers did not receive IgG-ASD antibodies. "In fact, there actually was a trend for the IgG-ASD offspring to receive less grooming from their same-age peers," she said. "It is possible that there were subtleties in the demeanor of the IgG-ASD offspring that dissuaded their peers from interacting with them."

These new behavioral findings build upon previous studies exploring the role of maternal antibodies in autism, including a pilot study conducted in non-human primates in 2008.

During the past five years, study co-author Judy Van de Water and her colleagues have made substantial progress in characterizing which maternal antibodies are highly specific to autism. Van de Water with colleagues Rob Berman and Daniel Braunschweig recently reported that mouse offspring prenatally exposed to these autism-specific antibodies exhibit altered physical and social development, including anxiety and social behavior.

"The non-human primate study provides an exciting look at the pathologic effect of these autism-specific maternal antibodies," said Judy Van de Water, who originally described the association between maternal antibodies to fetal brain proteins and ASD.

In addition to the behavioral changes, MRI analysis of the brains revealed altered patterns of neurodevelopment in the monkey offspring exposed to the IgG-ASD antibodies. The rate of brain growth was significantly faster in the male, but not female, IgG-ASD offspring, when compared with that of the control offspring. The total brain volume of the male IgG-ASD offspring also was significantly greater than normal, the researchers found.

While it is not clear why prenatal exposure to these antibodies only alters brain volume in the male offspring, a similar trajectory of abnormal brain development has been observed in male children with autism. Recent research from the MIND Institute has reported that boys with autism who were exposed prenatally to the same antibodies have significantly larger brains than boys with autism born to mothers without the IgG-ASD antibodies and typically developing control groups.

"The combination of brain and behavioral changes observed in the nonhuman primate offspring exposed to these autism-specific antibodies suggests that this is a very promising avenue of research." Bauman adds that this unique interdisciplinary study requires a team of researchers with expertise in immunology, animal behavior and neuroscience thus "highlighting the collaborative efforts that characterize research at the UC Davis MIND Institute."

David Amaral, research director of the MIND Institute and senior author of the paper, noted "that much research remains ahead of us to identify the mechanisms by which the antibodies affect brain development and behavior. But, this program of research is very exciting, because it opens pathways to potentially predicting and preventing some portion of future autism cases."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Sweet Tooth Science - Chocolate Antioxidants
Researchers develop a faster and cheaper method to test for antioxidants in chocolate.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!