Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Prenatal Maternal Antibodies Affect Child Development

Published: Wednesday, July 10, 2013
Last Updated: Wednesday, July 10, 2013
Bookmark and Share
Prenatal exposure to specific combinations of antibodies found only in mothers of children with autism leads to changes in the brain that adversely affect behavior and development.

The researchers said that the highly specific immunoglobulin-G (IgG) autoantibodies cross the placenta during pregnancy to impact fetal brain development, resulting in a form of autism that the researchers now are calling maternal antibody-related (MAR) autism. The researchers said that MAR autism cases could represent as much as 23 percent of all autism cases.

The research is published online today in Translational Psychiatry, a Nature journal.

During gestation, maternal IgG antibodies normally cross the placenta and protect the fetus, conferring the mother's immunities to the developing child. However, in addition to protective antibodies, autoantibodies that react to fetal proteins can also cross the placenta, essentially attacking fetal tissue.

The current study is an extension of an earlier study conducted in 2008. It explores the effects of the autism-specific IgG antibodies in a non-human primate model. Non-human primates live in complex social groups and use many forms of social communication. In addition, portions of the human brain, such as the prefrontal cortex, are poorly developed in other animal models, such as rodents, but are highly developed in the rhesus monkey.

For the study, a group of pregnant female monkeys were exposed to IgG purified from mothers of children with autism that exhibited fetal brain reactivity - the IgG-ASD group; a second group of pregnant female monkeys received IgG antibodies from the mothers of typically developing children. The third group included untreated animals that did not receive antibodies.

The study's lead researcher is Melissa D. Bauman, UC Davis assistant adjunct professor in the UC Davis Department of Psychiatry and Behavioral Sciences, and a faculty member at the MIND Institute. To evaluate development in the IgG-ASD offspring, Bauman and her colleagues carried out a comprehensive evaluation of behavioral development and periodically conducted longitudinal magnetic resonance imaging (MRI) of the monkeys' brain development during the first two years of life.

"The offspring of IgG-ASD antibody treated mothers consistently deviated from species-typical behavioral development of young rhesus monkeys," Bauman said. Early in development, the monkey mothers treated with IgG-ASD antibodies were much more protective of their offspring. For example, the IgG-ASD treated mothers more frequently approached and contacted their infants and remained in close proximity to them.

The mothers may have detected behavioral abnormalities in their IgG-ASD offspring that were so subtle that they escaped the researchers' attention, Bauman said. "The heightened protectiveness of the monkey mother's was observed only when other animals were present, suggesting that the mothers perceived a greater risk to their IgG-ASD treated infants," she said.

Other alterations in behavior were observed as the animals matured. For example, the offspring of the IgG-ASD antibody-treated animals more frequently approached other infants in their rearing group. "Even more strikingly, as they grew older, the IgG-ASD offspring increased their approaches to unfamiliar peers," she said. "Inappropriately approaching a novel animal is highly unusual and potentially dangerous for young rhesus monkeys."

Social interactions such as grooming or playing often occur when a young rhesus monkey approaches a peer. Despite the higher frequency of their approaches, the IgG-ASD offspring did not interact socially with peers more often than did the offspring whose mothers did not receive IgG-ASD antibodies. "In fact, there actually was a trend for the IgG-ASD offspring to receive less grooming from their same-age peers," she said. "It is possible that there were subtleties in the demeanor of the IgG-ASD offspring that dissuaded their peers from interacting with them."

These new behavioral findings build upon previous studies exploring the role of maternal antibodies in autism, including a pilot study conducted in non-human primates in 2008.

During the past five years, study co-author Judy Van de Water and her colleagues have made substantial progress in characterizing which maternal antibodies are highly specific to autism. Van de Water with colleagues Rob Berman and Daniel Braunschweig recently reported that mouse offspring prenatally exposed to these autism-specific antibodies exhibit altered physical and social development, including anxiety and social behavior.

"The non-human primate study provides an exciting look at the pathologic effect of these autism-specific maternal antibodies," said Judy Van de Water, who originally described the association between maternal antibodies to fetal brain proteins and ASD.

In addition to the behavioral changes, MRI analysis of the brains revealed altered patterns of neurodevelopment in the monkey offspring exposed to the IgG-ASD antibodies. The rate of brain growth was significantly faster in the male, but not female, IgG-ASD offspring, when compared with that of the control offspring. The total brain volume of the male IgG-ASD offspring also was significantly greater than normal, the researchers found.

While it is not clear why prenatal exposure to these antibodies only alters brain volume in the male offspring, a similar trajectory of abnormal brain development has been observed in male children with autism. Recent research from the MIND Institute has reported that boys with autism who were exposed prenatally to the same antibodies have significantly larger brains than boys with autism born to mothers without the IgG-ASD antibodies and typically developing control groups.

"The combination of brain and behavioral changes observed in the nonhuman primate offspring exposed to these autism-specific antibodies suggests that this is a very promising avenue of research." Bauman adds that this unique interdisciplinary study requires a team of researchers with expertise in immunology, animal behavior and neuroscience thus "highlighting the collaborative efforts that characterize research at the UC Davis MIND Institute."

David Amaral, research director of the MIND Institute and senior author of the paper, noted "that much research remains ahead of us to identify the mechanisms by which the antibodies affect brain development and behavior. But, this program of research is very exciting, because it opens pathways to potentially predicting and preventing some portion of future autism cases."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!