Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Minister Announces UK Funding to Build World-First Synthetic Yeast

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
UK scientists to build a chromosome for the world's first synthetic yeast.

Minister for Universities and Science David Willetts will today announce nearly £1M funding for the UK arm of an international consortium attempting to build a synthetic version of the yeast genome by 2017.

David Willetts said: "This research is truly groundbreaking and pushes the boundaries of synthetic biology. Thanks to this investment, UK scientists will be at the centre of an international effort using yeast - which gives us everything from beer to biofuels - to provide new research techniques and unparalleled insights into genetics. This will impact important industrial sectors like life sciences and agriculture."

When completed it will be the first time scientists have built the whole genome of a eukaryotic organism - those organisms, like animals and plants, which store DNA within a nucleus. Scientists can then design different strains of synthetic yeast that contain genes to make commercially valuable products such as chemicals, vaccines or biofuels.

Collaborators from the UK, USA, China and India are meeting at Imperial College London to discuss their plans and progress so far, and hear from related projects underway using bacteria. For the Sc 2.0 project, teams at universities around the world are responsible for building each of the 16 individual yeast chromosomes that together comprise the complete genome.

Funding for the UK team, led by Dr Tom Ellis and Prof Paul Freemont at the Centre for Synthetic Biology and Innovation (CSynBI) at Imperial College London, with help from Prof Alistair Elfick at the University of Edinburgh and Prof Steve Oliver at Cambridge University, was recently approved from the Biotechnology and Biological Sciences Research Council (BBSRC) with co-funding from the Engineering and Physical Sciences Research Council (EPSRC).

The £970,000 funding for the Sc 2.0 UK Genome Engineering Resource (SUGER), awarded through the Bioinformatics and Biological Resources Fund, will allow the UK team to build and test Synthetic Chromosome XI, which is 0.7 million DNA base pairs long.

Dr Tom Ellis, Lecturer in Synthetic Biology at Imperial College London, said: "We are excited to be welcoming our new international consortium partners to London to discuss Sc 2.0. Having recently secured funding for the UK to be part of this ground-breaking project, we are looking forward to getting started and being part of the action. It's a perfect fit for our work in synthetic biology here at Imperial, where we really view yeast as a tiny factory that can be tooled-up to produce new molecules. A synthetic genome will allow us to reprogram yeast and our goal is to use it to produce new antibiotics as resistance arises to existing ones."

The synthetic yeast genome will be tailored to aid research and is expected to give new and detailed insights into many aspects of genetics including genome organisation, structure and evolution, as well as advance the exciting new field of synthetic biology.

The project originated from Johns Hopkins University in Baltimore, USA, and is being co-ordinated by Professor Jef Boeke of the Johns Hopkins University School of Medicine.

Prof Boeke said: "Sc 2.0, once completed, will provide unparalleled opportunities for asking profound questions about biology in new and interesting ways, such as: How much genome scrambling generates a new species? How many genes can we delete from the genome and still have a healthy yeast? And how can an organism adapt its gene networks to cope with the loss of an important gene? Moreover, genome scrambling may find many uses in biotechnology, for example in the development of yeast that can tolerate higher ethanol levels."

Professor Freemont, co-director of CSynBI and Chair in Protein Crystallography at Imperial College London, added: "Yeasts have evolved over millions of years, making energy from sugars and excreting alcohol and carbon dioxide gas. Humans have adapted these organisms to our advantage, using their by-products to make alcoholic drinks and risen baked goods. Now we have the opportunity to adapt yeasts further, turning them into predictable and robust hosts for manufacturing the complex products we need for modern living. "

The S. cerevisiae genome was picked for the project because its 6,000 genes make it relatively small and scientists are already very familiar with it; yeast was the first eukaryotic organism to have its genome completely sequenced.

To complete the work a new suite of bioinformatics software and detailed genome engineering methods are being developed and these, alongside the highly-evolvable synthetic yeast strains themselves, will be made an open-access resource to advance research in numerous fields.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Technique to Beat the Food Fraudsters
Shoppers can be more confident that their burgers are the real deal following a new method of testing for meat fraud developed at the Institute of Food Research on the Norwich Research Park.
Monday, October 03, 2016
£9M Funding to Optimise UK Food Supply
Five research prjects have been awarded a portion of £9M to help increase resilience in UK food systems.
Wednesday, August 31, 2016
£4.5M Newton Fund to Tackle Antimicrobial Resistance
Six research partnerships tackling the rise of anti-microbial resistance (AMR) have been created with £4.5M investment by the UK Research Councils.
Wednesday, August 31, 2016
Major Pathogen of Barley Decoded
A team of scientists studying the fungus that causes Ramularia leaf spot have sequenced and explored its genome.
Wednesday, August 31, 2016
UK-Brazil Wheat Research Projects Awarded £4M
£4M investment from BBSRC and Embrapa has been awarded to four Brazil-UK partnerships.
Wednesday, July 27, 2016
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Wednesday, July 27, 2016
A New £81.6M Food and Health Research Centre
The Quadram Institute is the name of the new centre for food and health research to be located at the heart of the Norwich Research Park, one of Europe’s largest single-site concentrations of research in food, health and environmental sciences.
Wednesday, February 17, 2016
Genome-Editing Position Statement
A group of leading UK research organisations has today issued an initial joint statement in support of the continued use of CRISPR-Cas9 and other genome-editing techniques in preclinical research.
Monday, September 07, 2015
Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Unique Visual Stimulation May Be New Treatment for Alzheimer’s
Noninvasive technique reduces beta amyloid plaques in mouse models of Alzheimer’s disease.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!