Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Discover Two-Step Mechanism of Inner Ear Tip Link Regrowth

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
Mechanism offers potential for interventions that could save hearing.

A team of NIH-supported researchers is the first to show, in mice, an unexpected two-step process that happens during the growth and regeneration of inner ear tip links.

Tip links are extracellular tethers that link stereocilia, the tiny sensory projections on inner ear hair cells that convert sound into electrical signals, and play a key role in hearing.

The discovery offers a possible mechanism for potential interventions that could preserve hearing in people whose hearing loss is caused by genetic disorders related to tip link dysfunction.

The work was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD), a component of the National Institutes of Health.

The findings appear in the June 11, 2013 online edition of PLoS Biology. The senior author of this study is Gregory I. Frolenkov, an associate professor in the College of Medicine at the University of Kentucky, Lexington, and his fellow, Artur A. Indzhykulian, Ph.D., is the lead author.

Stereocilia are bundles of bristly projections that extend from the tops of sensory cells, called hair cells, in the inner ear. Each stereocilia bundle is arranged in three neat rows that rise from lowest to highest like stair steps.

Tip links are tiny thread-like strands that link the tip of a shorter stereocilium to the side of the taller one behind it. When sound vibrations enter the inner ear, the stereocilia, connected by the tip links, all lean to the same side and open special channels, called mechanotransduction channels.

These pore-like openings allow potassium and calcium ions to enter the hair cell and kick off an electrical signal that eventually travels to the brain where it is interpreted as sound.

The findings build on a number of recent discoveries in laboratories at NIDCD and elsewhere that have carefully plotted the structure and function of tip links and the proteins that comprise them.

Earlier studies had shown that tip links are made up of two proteins - cadherin-23 (CDH23) and protocadherin-15 (PCDH15) - that join to make the link, with PCDH15 at the bottom of the tip link at the site of the mechanotransduction channel, and CDH23 on the upper end. Scientists assumed that the assembly was static and stable once the two proteins bonded.

Tip links break easily with exposure to noise. But unlike hair cells, which can't regenerate in humans, tip links repair themselves, mostly within a matter of hours. The breaking of tip links, and their regeneration, has been known about for many years, and is seen as one of the causes of the temporary hearing loss you might experience after a loud blast of sound (or a loud concert).

Once the tip links regenerate, hair cell function returns usually to normal levels. What scientists didn't know was how the tip link reassembled.

To study tip link assembly, the researchers treated young, postnatal (5-7 days) mouse sensory hair cells with BAPTA -- a substance that, like loud noise, damages and disrupts tip links.

To image the proteins, the group pioneered an improved scanning electron microscopy (SEM) technique of immunogold labeling that uses antibodies bound to gold particles that attach to the proteins. Then using SEM they imaged the cells at high resolution to determine the positions of the proteins before, during, and after BAPTA treatment.

What the researchers found was that after a tip link is chemically disrupted, a new tip link forms, but instead of the normal combination of CDH23 and PCDH15, the link is made up of PCDH15 proteins at both ends.

Over the next 24 hours, the PCDH15 protein at the upper end is replaced by CDH23 and the tip link is back to normal.

Why tip links regenerate using a two-step instead of a neat one-step process is not known. For reasons that are still unclear, CDH23 disappears from stereocilia after noise damage while PDCH15 stays around.

Looking to regenerate quickly, the lower PDCH15 latches onto another PDCH15, forming a shorter and functionally slightly weaker tip link. Later, at some time during the 36 hours after the damage, when CDH23 returns, PDCH15 gives up its provisional partner and latches onto its much stronger mate in CDH23. In other words, PDCH15 prefers to be with CDH23, but in a pinch it will bond weakly with another bit of PDCH15 until CDH23 shows up.

The researchers coupled the SEM observations with electrophysiology studies to show how the functional properties of the tip links changed throughout this two-step process.

The temporary PCDH15/PCDH15 tip link has a slightly different functional response than the permanent PDCH15/CDH23 combination.

Researchers were able to correlate the differences in function with the protein combinations that make up the tip link.

Additional experiments revealed that when hair cells develop, the tip links use the same two-step process.

Previous research has shown that both CDH23 and PCDH15 are required for normal hearing and vision. In fact, NIDCD scientists in earlier studies have shown that mutations in either of these genes can cause the hearing loss or deaf-blindness found in Usher Syndrome types 1D and 1F.

"In the case of deaf individuals who are unable to make functional CDH23, knowledge of this new temporary alliance of PCDH15 proteins to form a weaker, but still functional, tip link could inform treatments that would encourage the double PCDH15 bond to become permanent and maintain at least limited hearing," said Tom Friedman, Ph.D., chief of the Laboratory of Molecular Genetics at NIDCD where the research began.

The research was supported by NIDCD intramural funds DC000048-15 and NIDCD/NIH grants R01 DC008861, R01 DC002368, R01 DC012564, and P30 DC0058983.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Saturday, July 23, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
Brain Circuits Helps People Cope With Stress
Researchers at NIH have identified brain patterns in humans that appear to underlie “resilient coping,” to stress that help some people handle stressful situations better than others.
Wednesday, July 20, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Use it or Lose it: Visual Activity Regenerates Links Between Eye, Brain
The mouse study is first to show visual stimulation helps re-wire visual system and partially restores sight.
Tuesday, July 12, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
NIH-Funded Center to Study Inefficiencies in Clinical Trials
Researchers at the Duke Clinical Research Institute (DCRI) and Vanderbilt University Medical Center (VUMC) have received a major federal grant to study how multisite clinical trials of new drugs and therapies in children and adults can be conducted more rapidly and efficiently.
Thursday, July 07, 2016
NIH Funds Zika Virus Study Involving U.S. Olympic Team
Researchers will monitor potential Zika virus exposure among a subset of athletes traveling to Brazil.
Wednesday, July 06, 2016
PREVAIL Treatment Trial for Men with Persistent Ebola Viral RNA
The six-month study will enroll 60 to 120 EVD survivors.
Wednesday, July 06, 2016
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Friday, July 01, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!