Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Researchers Discover Two-Step Mechanism of Inner Ear Tip Link Regrowth

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
Mechanism offers potential for interventions that could save hearing.

A team of NIH-supported researchers is the first to show, in mice, an unexpected two-step process that happens during the growth and regeneration of inner ear tip links.

Tip links are extracellular tethers that link stereocilia, the tiny sensory projections on inner ear hair cells that convert sound into electrical signals, and play a key role in hearing.

The discovery offers a possible mechanism for potential interventions that could preserve hearing in people whose hearing loss is caused by genetic disorders related to tip link dysfunction.

The work was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD), a component of the National Institutes of Health.

The findings appear in the June 11, 2013 online edition of PLoS Biology. The senior author of this study is Gregory I. Frolenkov, an associate professor in the College of Medicine at the University of Kentucky, Lexington, and his fellow, Artur A. Indzhykulian, Ph.D., is the lead author.

Stereocilia are bundles of bristly projections that extend from the tops of sensory cells, called hair cells, in the inner ear. Each stereocilia bundle is arranged in three neat rows that rise from lowest to highest like stair steps.

Tip links are tiny thread-like strands that link the tip of a shorter stereocilium to the side of the taller one behind it. When sound vibrations enter the inner ear, the stereocilia, connected by the tip links, all lean to the same side and open special channels, called mechanotransduction channels.

These pore-like openings allow potassium and calcium ions to enter the hair cell and kick off an electrical signal that eventually travels to the brain where it is interpreted as sound.

The findings build on a number of recent discoveries in laboratories at NIDCD and elsewhere that have carefully plotted the structure and function of tip links and the proteins that comprise them.

Earlier studies had shown that tip links are made up of two proteins - cadherin-23 (CDH23) and protocadherin-15 (PCDH15) - that join to make the link, with PCDH15 at the bottom of the tip link at the site of the mechanotransduction channel, and CDH23 on the upper end. Scientists assumed that the assembly was static and stable once the two proteins bonded.

Tip links break easily with exposure to noise. But unlike hair cells, which can't regenerate in humans, tip links repair themselves, mostly within a matter of hours. The breaking of tip links, and their regeneration, has been known about for many years, and is seen as one of the causes of the temporary hearing loss you might experience after a loud blast of sound (or a loud concert).

Once the tip links regenerate, hair cell function returns usually to normal levels. What scientists didn't know was how the tip link reassembled.

To study tip link assembly, the researchers treated young, postnatal (5-7 days) mouse sensory hair cells with BAPTA -- a substance that, like loud noise, damages and disrupts tip links.

To image the proteins, the group pioneered an improved scanning electron microscopy (SEM) technique of immunogold labeling that uses antibodies bound to gold particles that attach to the proteins. Then using SEM they imaged the cells at high resolution to determine the positions of the proteins before, during, and after BAPTA treatment.

What the researchers found was that after a tip link is chemically disrupted, a new tip link forms, but instead of the normal combination of CDH23 and PCDH15, the link is made up of PCDH15 proteins at both ends.

Over the next 24 hours, the PCDH15 protein at the upper end is replaced by CDH23 and the tip link is back to normal.

Why tip links regenerate using a two-step instead of a neat one-step process is not known. For reasons that are still unclear, CDH23 disappears from stereocilia after noise damage while PDCH15 stays around.

Looking to regenerate quickly, the lower PDCH15 latches onto another PDCH15, forming a shorter and functionally slightly weaker tip link. Later, at some time during the 36 hours after the damage, when CDH23 returns, PDCH15 gives up its provisional partner and latches onto its much stronger mate in CDH23. In other words, PDCH15 prefers to be with CDH23, but in a pinch it will bond weakly with another bit of PDCH15 until CDH23 shows up.

The researchers coupled the SEM observations with electrophysiology studies to show how the functional properties of the tip links changed throughout this two-step process.

The temporary PCDH15/PCDH15 tip link has a slightly different functional response than the permanent PDCH15/CDH23 combination.

Researchers were able to correlate the differences in function with the protein combinations that make up the tip link.

Additional experiments revealed that when hair cells develop, the tip links use the same two-step process.

Previous research has shown that both CDH23 and PCDH15 are required for normal hearing and vision. In fact, NIDCD scientists in earlier studies have shown that mutations in either of these genes can cause the hearing loss or deaf-blindness found in Usher Syndrome types 1D and 1F.

"In the case of deaf individuals who are unable to make functional CDH23, knowledge of this new temporary alliance of PCDH15 proteins to form a weaker, but still functional, tip link could inform treatments that would encourage the double PCDH15 bond to become permanent and maintain at least limited hearing," said Tom Friedman, Ph.D., chief of the Laboratory of Molecular Genetics at NIDCD where the research began.

The research was supported by NIDCD intramural funds DC000048-15 and NIDCD/NIH grants R01 DC008861, R01 DC002368, R01 DC012564, and P30 DC0058983.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos