Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Quality of Waking Hours Key to Falling Sleep

Published: Monday, July 15, 2013
Last Updated: Monday, July 15, 2013
Bookmark and Share
UT Southwestern researchers identifies two proteins never before linked to alertness and sleep-wake balance.

The quality of wakefulness affects how quickly a mammal falls asleep, UT Southwestern Medical Center researchers report in a study that identifies two proteins never before linked to alertness and sleep-wake balance.

“This study supports the idea that subjective sleepiness is influenced by the quality of experiences right before bedtime. Are you reluctantly awake or excited to be awake?” said Dr. Masashi Yanagisawa, professor of molecular genetics and a Howard Hughes Medical Institute investigator at UT Southwestern. He is principal author of the study published online in May in the Proceedings of the National Academy of Sciences.

Co-author Dr. Robert Greene, UT Southwestern professor of psychiatry and a physician at the Dallas VA Medical Center, said the study is unique in showing that the need for sleep (called sleep homeostasis) can be separated from wakefulness both behaviorally and biochemically, meaning the two processes can now be studied individually.

“Two of the great mysteries in neuroscience are why do we sleep and what is sleep’s function? Separating sleep need from wakefulness and identifying two different proteins involved in these steps represents a fundamental advance,” he said.

If borne out by further research, this study could lead to new ways of assessing and possibly treating sleep disorders, perhaps by focusing more attention on the hours before bedtime because the quality of wakefulness has a profound effect on sleep, Dr. Yanagisawa said.

The experiment featured three groups of mice with virtually identical genes. The control group slept and woke at will and followed the usual mouse pattern of sleeping during the day and being awake at night.

The two test groups were treated the same and had the same amount of sleep delay - six hours - but they were kept awake in different ways, said lead author Dr. Ayako Suzuki, a postdoctoral researcher who works in the laboratories of both Dr. Yanagisawa and Dr. Greene.

The first test group’s sleep was delayed by a series of cage changes. Mice are intensely curious, so each cage change was followed by an hour spent vigorously exploring the new surroundings.

This behavior would roughly correspond to teenagers voluntarily delaying bedtime with a new and stimulating event like a rock concert or video game.

Researchers kept the second group awake as gently as possible, usually by waving a hand in front of the cage or tapping it lightly whenever the mice appeared to be settling down to sleep. That test group would more resemble parents reluctantly staying awake awaiting a child’s return from a concert.

Both test groups experienced the same amount of sleep deprivation, but their reactions to the different forms of alertness were striking, Dr. Yanagisawa said. In one test, the cage-changing group took longer to fall asleep than the gentle-handling group even though an analysis of their brain waves indicated equal amounts of sleep need in both test groups.

“The need to sleep is as high in the cage-changing group as in the gentle-handling group, but the cage-changers didn’t feel sleepy at all. Their time to fall asleep was nearly the same as the free-sleeping, well-rested control group,” he said.

The researchers identified two proteins that affected these responses, each linked to different aspects of sleep: phosphorylated dynamin 1 levels were linked to how long it took to fall asleep, while phosphorylated N-myc downstream regulated gene 2 protein levels tracked the amount of sleep deprivation and corresponded to the well-known brain-wave measure of sleep need, they report.

“The two situations are different biochemically, which is a novel finding,” Dr. Yanagisawa said, adding, “These proteins are completely new to sleep research and have never before been linked to sleep need and wakefulness.”

From an evolutionary perspective, an arousal mechanism that adapts to environmental stimuli is crucial because sleeping on a rigid schedule could be dangerous. “Animals, including humans, must be able to keep themselves at least temporarily alert, say during a natural disaster,” he said.

Drs. Yanagisawa and Greene are both corresponding authors on the study, and both have dual appointments at the International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan. Former Associate Professor of Internal Medicine Dr. Christopher M. Sinton, now at the University of Arizona, was also involved in the study.

The study was funded by the Japan Society for the Promotion of Science through the Funding Program for World-Leading Innovative R&D on Science and Technology; the Perot Family Foundation; and the Department of Veterans Affairs.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Saturday, October 01, 2016
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
Friday, September 30, 2016
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Wednesday, September 21, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Scientists Enhance Ability of Antibiotics to Defeat Resistant Types of Bacteria
Researchers at UTSW have reported successful use of a synthetic molecule to enhance antibiotic effectiveness against certain pathogens.
Saturday, September 17, 2016
Researchers Identify Method of Creating Long-Lasting Memories
Researchers at UTSW have found that the attention-grabbing experiences trigger the release of memory-enhancing chemicals to help etch memories into the brain.
Thursday, September 08, 2016
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
Innate Immunity Connection to Rare Childhood Disease
Researchers have discovered a gene that's linked to a rare, fatal syndrome in children has an important innate immunity role.
Thursday, August 04, 2016
UT Southwestern Targets Rising Rates of Kidney Cancer
Company has received $11 million in funding to the rising threat of kidney cancer.
Wednesday, August 03, 2016
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
Friday, July 22, 2016
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Friday, July 22, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!