Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Scientists Break Record for Thinnest Light-Absorber

Published: Monday, July 22, 2013
Last Updated: Monday, July 22, 2013
Bookmark and Share
Stanford scientists have built the thinnest, most efficient absorber of visible light on record, a nanosize structure that could lead to less-costly, more efficient, solar cells.

Stanford University scientists have created the thinnest, most efficient absorber of visible light on record. The nanosize structure, thousands of times thinner than an ordinary sheet of paper, could lower the cost and improve the efficiency of solar cells, according to the scientists.

Their results are published in the current online edition of the journal Nano Letters.

"Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity," said Stacey Bent, a professor of chemical engineering at Stanford and a member of the research team.

Bent continued, "Our results show that it is possible for an extremely thin layer of material to absorb almost 100 percent of incident light of a specific wavelength."

Thinner solar cells require less material and therefore cost less. The challenge for researchers is to reduce the thickness of the cell without compromising its ability to absorb and convert sunlight into clean energy.

For the study, the Stanford team created thin wafers dotted with trillions of round particles of gold. Each gold nanodot was about 14 nanometers tall and 17 nanometers wide.

Visible spectrum
An ideal solar cell would be able to absorb the entire visible light spectrum, from violet light waves 400 nanometers long to red waves 700 nanometers in length, as well as invisible ultraviolet and infrared light.

In the experiment, postdoctoral scholar Carl Hagglund and his colleagues were able to tune the gold nanodots to absorb one light from one spot on the spectrum: reddish-orange light waves about 600 nanometers long.

"Much like a guitar string, which has a resonance frequency that changes when you tune it, metal particles have a resonance frequency that can be fine-tuned to absorb a particular wavelength of light," said Hagglund, lead author of the study. "We tuned the optical properties of our system to maximize the light absorption."

The gold nanodot-filled wafers were fabricated at a nearby Hitachi facility using a technique called block-copolymer lithography.

Each wafer contained about 520 billion nanodots per square inch. Under the microscope, the hexagonal array of particles was reminiscent of a honeycomb.

Hagglund's team added a thin-film coating on top of the wafers using a process called atomic layer deposition. "It's a very attractive technique, because you can coat the particles uniformly and control the thickness of the film down to the atomic level, " he said.

Hagglund continued, "That allowed us to tune the system simply by changing the thickness of the coating around the dots. People have built arrays like this, but they haven't tuned them to the optimal conditions for light absorption. That's one novel aspect of our work."

Record results
The results were record-setting. "The coated wafers absorbed 99 percent of the reddish-orange light," Hagglund said. "We also achieved 93 percent absorption in the gold nanodots themselves. The volume of each dot is equivalent to a layer of gold just 1.6 nanometers thick, making it the thinnest absorber of visible light on record - about 1,000 times thinner than commercially available thin film solar cell absorbers."

The previous record-holder required an absorber layer three times thicker to reach total light absorption, he added. "So we've substantially pushed the limits of what can be achieved for light harvesting by optimizing these ultrathin, nano-engineered systems," Hagglund said.

The next step for the Stanford team is to demonstrate that the technology can be used in actual solar cells.

"We are now looking at building structures using ultrathin semiconductor materials that can absorb sunlight," said Bent, co-director of the Stanford Center on Nanostructuring for Efficient Energy Conversion (CNEEC). "These prototypes will then be tested to see how efficiently we can achieve solar energy conversion."

In the experiment, the researchers applied three types of coatings - tin sulfide, zinc oxide and aluminum oxide - on different nanodot arrays. "None of these coatings are light-absorbing," Hagglund said.

"But it has been shown theoretically that if you apply a semiconductor coating, you can shift the absorption from the metal particles to the semiconductor materials. That would create more long-lived energetic charge carriers that could be channeled into some useful process, like making an electrical current or synthesizing fuel."

Final goal
The ultimate goal, Bent added, is to develop improved solar cells and solar fuel devices by confining the absorption of sunlight to the smallest amount of material possible. "This provides a benefit in minimizing the material necessary to build the device, of course," she said.

"But the expectation is that it will also allow for higher efficiencies, because by design, the charge carriers will be produced very close to where they are desired - that is, near where they will be collected to produce an electrical current or to drive a chemical reaction."

The scientists are also considering nanodot arrays made of less expensive metals. "We chose gold because it was more chemically stable for our experiment," Hagglund said. "Although the cost of the gold was virtually negligible, silver is cheaper and better from an optical point of view if you want to make a good solar cell. Our device represents an orders-of-magnitude reduction in thickness. This suggests that we can eventually reduce the thickness of solar cells quite a lot."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Resurrecting an Abandoned Drug
Previously discarded drug shows promise in helping human cells in a lab dish fight off two different viruses.
Wednesday, March 30, 2016
Fracking's Impact on Drinking Water Sources
A case study of a small Wyoming town reveals that practices common in the fracking industry may have widespread impacts on drinking water resources.
Wednesday, March 30, 2016
Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Weighing up the Risk of Groundwater Contamination
Faulty, shallow wells can leak oil and natural gas into underground drinking-water supplies, Stanford Professor Rob Jackson finds.
Wednesday, February 24, 2016
Blood Test Could Transform TB Diagnosis
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.
Tuesday, February 23, 2016
Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Marker Identifies Most Basic Form of Blood Stem Cell
Nearly 30 years after the discovery of the hematopoietic stem cell, Stanford researchers have found a marker that allows them to study the version of these stem cells that continues to replicate.
Wednesday, February 17, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Scientific News
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!