Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Future of UK Farming: GM Crops on Organic Farms Fertilised by Human Excrement

Published: Monday, July 22, 2013
Last Updated: Monday, July 22, 2013
Bookmark and Share
According to scientists at the University of Sheffield, society will have to rethink its attitudes to GM technology and accept an inevitable role for human excrement in the food chain.

A team led by Dr Duncan Cameron and Dr Jurriaan Ton believes that UK farming’s inevitable future will be a combination of genetically modified crops on organic farms fertilized by human waste.   Analysis by the University of Sheffield team has found that the UK’s available soil has just 100 seasons of nutrients left in it.  

Dr Duncan Cameron from the University of Sheffield said:   “Safeguarding food security for future generations is one of the biggest challenges for the 21st century. In a time of rapid environmental change we need new ways to intensify sustainable production and protect food crops.  This isn’t optional.  Like it or not, the sh*t is going to hit the fan.”

The challenges of modern day agriculture are numerous: climate change, soil degradation, water shortages and growing demand. Phosphorous and nitrogen are limiting nutrients, essential to the growing process and both are found in human waste which the scientists believe could be used more efficiently.  People produce an average of 1.5 tonnes of faeces and urine each year. The University of Sheffield team believe that this will provide 20 kg of elemental PNK fertilizer, enough to grow 200 kg of cereal.

The work is part of Project Sunshine, an initiative led by the Faculty of Science at the University of Sheffield that aims to unite scientists working in both pure and applied sciences to harness the power of the Sun and tackle the challenges of meeting the food and energy needs of the world's population in the context of an uncertain climate and global environment change. 

The careful cross breeding of plant characteristics during the so-called “green revolution” between the 1940s and the 1970s resulted in highly productive crops and, according to estimates, saved more than a billion people from starvation.  The process, though, has not been not without consequence. Plants today are heavily reliant on fertilizers and many have lost the important natural traits that enable them to interact with beneficial bacteria and fungi in the soil.  

Today scientists are capable of identifying the exact genes that were lost during breeding programmes.  By applying modern day GM technologies, these ‘lost genes’ can be put back and crops returned to their more communicative nature.  

The University of Sheffield’s scientists say a sustainable farming future also has to be more reliant on organic farming that relies heavily on the natural breakdown of organic matter to replace nutrients taken from the soil by previous crops.  

Human waste is already deployed in some developing countries, driven by water shortages and escalating fertilizer costs.  All health risks can be eliminated from human excrement by proper composting.

Dr Duncan Cameron, from the University of Sheffield, added: “We need to break the cycle that has led to many crops requiring the agricultural equivalent of spoon feeding, with chemical fertilisers and industrial irrigation.  Whilst seemingly efficient, we are mollycoddling nature and this will lead to substantial yield losses due to pests and diseases.”  

Global crop losses by diseases and pests have been estimated to amount up to one third of its potential production, whereas abiotic stresses cause further substantial crop losses annually.   

The University of Sheffield team is developing new methods that enable these functions to be restored in combination with more sustainable management of agricultural land.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3D-Printed Guides Can Help Restore Function In Damaged Nerves
Scientists at the University of Sheffield have succeeded in using a 3D printed guide to help nerves damaged in traumatic incidents repair themselves.
Monday, March 02, 2015
New Lead for Potential Parkinson’s Treatment
Effects of high-risk Parkinson’s mutation are reversible.
Friday, October 17, 2014
Unlocking the Secrets of DNA Repair
Scientists from the University of Sheffield have unlocked one of the secrets to DNA repair –helping doctors identify DNA base damage and a patient's susceptibility to certain types of cancer.
Friday, November 02, 2012
Human Stem Cells Cure Common Form of Deafness
Experts from University developed a method to turn human embryonic stem cells into ear cells.
Tuesday, September 25, 2012
Human Embryonic Stem Cells Could Help to Treat Deafness
A cure for deafness is a step closer after University of Sheffield scientists used human embryonic stem cells to treat a common form of hearing loss.
Thursday, September 20, 2012
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!