Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Predicting how Insects, Plants Interact

Published: Tuesday, July 23, 2013
Last Updated: Tuesday, July 23, 2013
Bookmark and Share
Butterfly and moth larvae feeding on native plants will extend their diet to newly introduced non-native plants, but which ones?

Two UC Davis-affiliated ecologists have developed a novel method that predicts plant/herbivore interactions before the plants arrive.

The research, involving 900 butterfly and moth species and 459 non-native plants in Europe, may lead to better screening of potential invasive plants, risk assessment, and pest management strategies, said researchers Ian Pearse and Florian Altermatt.

"Despite the growing prevalence of non-native plants, there are few effective tools for predicting the fate of non-native plants or their impacts on native communities," they wrote in newly published research, "Predicting Novel Trophic Interactions in a Non-Native World," in Ecology Letters. "We demonstrated that novel interactions between herbivores and non-native plants can be predicted based on plant evolutionary relationships and properties in the native herbivore-plant food web."

"My work has asked why some non-native plants are attacked by native herbivores while others are not," said Pearse, who completed the research while studying for his doctorate degree in entomology at UC Davis. He teamed with Altermatt, then a UC Davis postdoctoral scholar with the UC Davis Department of Environmental Science and Policy. Pearse is now a postdoctoral researcher in the Cornell Lab of Ornithology, and Altermatt is with the Swiss Federal Institute of Aquatic Science and Technology in Zurich, Switzerland.

Altermatt, interested in long-term trends in moth populations, assembled what Pearse called "one of the most extensive food webs of moth-host plant interactions, which covers a large part of Germany."

"We noticed that many non-native plants were included as hosts of native moths in that food web," Pearse said, "and we thought that we could use some of the ideas that I had been working on to explain which moths have started to eat which non-native plants."

"Herbivores, by in large, are not very adventurous in what they eat," Pearse said. "So, when a non-native plant enters their habitat, they tend to colonize those that are similar to the ones that they already eat. Plant evolutionary relationships are one of the best ways of looking at similarity between plants."

They successfully predicted the majority of novel interactions between herbivores and non-native plants. "When non-native plants enter a new ecosystem, their success and effects are mostly unpredictable," Pearse said. "However, we showed that one very predictable aspect of a non-native plant is which native herbivores can colonize it."

For instance, the larvae of the cinnabar moth (family Tyriajacobaeae), are a biocontrol agent of ragworts (Senecio), a native of Europe, but they also will colonize other plants. A geometrid moth, Eupithecia virganreata feeds on various ragworts but over the last decades, has extended its diet to invasive goldenrods (Solidago canadensis and S. gigantea).

On the basis of interactions between native hosts and insects, the researchers found "specific diet extensions of potential European pest insects to plants of forestry or agricultural interest introduced from North America, as well as the diet extension of European insects onto non-native plants that are of invasive concern."

"The goal of this approach is to correctly identify specific important interactions between a novel plant and native herbivore with the lowest possible false-positive rate, where a null model would result in a 50 percent false-positive rate," they wrote. "For example, we predicted that the tussock moth (Calliteara pudibunda) colonizes red oak (Quercus rubra; a common introduced tree throughout Europe) with a false-positive rate of only 0.7 percent. The tussock moth is an herbivorous insect of forestry concerns, having mass-outbreaks, and it is thus critical to understand its diet extension to novel host plants. Similarly, we predicted that the specialist Sessiid moth Synanthedon tipuliformis colonizes Ribes aureum, a cultivated gooseberry introduced from North America, with a false-positive rate of only 2.0 percent. S. tipuliformis is known to cause damage in agricultural gooseberry plantations, and an accurate prediction of host switch to introduced agricultural gooseberries is thus economically important."

Pearse received his doctorate in entomology from UC Davis in 2011, studying with major professor Rick Karban. Pearse's current research at Cornell "is trying to understand masting in oak trees; that is, why and how trees produce very large seed sets in some years but small ones in others."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!