Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.

The awards total approximately $6.7 million in the first year and, if funding remains available, approximately $27 million in total.

The areas of research being pursued by these new projects include using genome sequencing to inform couples about reproductive risks, determining the genetic causes of childhood developmental delays and communicating findings to parents, and detecting genomic alterations that can lead to cancer. The new grants are funded as part of the National Human Genome Research Institute’s (NHGRI) Clinical Sequencing Exploratory Research (CSER) program. NHGRI is part of NIH.

The new grants expand on the initial CSER program awards given to six research teams in December 2011. The current funding includes approximately $5 million from the National Cancer Institute, also part of NIH.

“Since the first round of CSER program awards were announced in 2011, the use of clinical genome sequencing has seen tremendous growth,” said Bradley Ozenberger, Ph.D., CSER program director and deputy director of the Division of Genomic Medicine at NHGRI. “Genome sequencing has vast potential to uncover new targets for therapy. We’re continuing to learn how best to use genome sequence data to understand disease susceptibility and causation, and to advance treatment.”

The use of clinical genome sequencing has increased due to the advent of more efficient methods for DNA sequencing, but many obstacles remain to its routine use. Some physicians typically lack experience and education in the use of genomic information, said Dr. Ozenberger. At the same time, some patients don’t fully understand what genomic information can tell them. Many people may be reluctant to find out what information resides in their genome, he said.

“It’s not enough to understand the scientific issues related to the medical applications of genomics. Researchers must also examine how best to discuss genome sequencing results and their potential implications with doctors, patients and caregivers,” said Jean McEwen, J.D., Ph.D., program director for the Ethical, Legal and Social Implications program in the Division of Genomics and Society at NHGRI.

The new CSER program grants are awarded to the following groups:

•    Kaiser Foundation Research Institute, Portland, Ore., $8.1 million (pending available funds)

Principal Investigators: Katrina Goddard, Ph.D., and Benjamin Wilfond, M.D., Seattle Children’s Research Institute

Drs. Goddard and Wilfond will lead a project that examines the use of whole-genome sequencing in informing couples, before they conceive a child, about their potential carrier status for genetic disease. They will compare women and their partners who receive preconception genetic testing to those who receive whole-genome sequencing in addition to the testing. Scientists will look for genetic mutations for about 100 rare conditions and expect to enroll 380 people in the trial. Couples with mutations that put children at risk for a condition will work with a genetic counselor and complete surveys to help researchers develop useful approaches to presenting information to patients.

•    Hudson-Alpha Institute for Biotechnology, Huntsville, Ala., $7.66 million (pending available funds)

Principal Investigator: Richard Myers, Ph.D.

Dr. Myers and his colleagues will sequence the genomes of nearly 500 children with developmental delays and other disabilities, along with their parents, in the hopes of discovering genomic alterations behind such disorders. As many as 1 to 3 percent of children worldwide are born with genetic disorders that lead to developmental or intellectual delays or disabilities. The researchers hope to uncover gene alterations that are common to more than one condition and gain insights to whether certain mutations cause milder or more severe cases of some conditions. The scientists plan to provide information on genetic differences to study participants and families and use questionnaires and interviews to better understand the impact of genomic testing results on families.

•    University of Michigan, Ann Arbor, $7.97 million (pending available funds)

Principal Investigator: Arul Chinnaiyan, M.D., Ph.D.

Dr. Chinnaiyan and his team will sequence the genomes of tumors from 500 patients with advanced sarcoma or other rare cancers to discover new information about genomic alterations, with the goal of eventually customizing therapies. Few clinical trials have been conducted in most rare cancers, and scientists would like to know more about the genetic underpinnings of these diseases. Investigators also plan to evaluate the patient consent process, and the delivery and use of genome sequencing results.

•    University of Washington, Seattle, $3 million (pending available funds)

Principal Investigators: Gail Jarvik, M.D., Ph.D., Wylie Burke, M.D., Ph.D., Debbie Nickerson, Ph.D., Peter Tarczy-Hornoch, M.D.

Dr. Jarvik and her colleagues at the University of Washington will lead the coordinating center responsible for pulling together all of the scientific teams, helping to organize studies, interpreting study results and helping groups focus on common goals. The coordinating center team members bring their own expertise in clinical genetics, genome sequencing, bioinformatics and ethics.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos