Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.

The awards total approximately $6.7 million in the first year and, if funding remains available, approximately $27 million in total.

The areas of research being pursued by these new projects include using genome sequencing to inform couples about reproductive risks, determining the genetic causes of childhood developmental delays and communicating findings to parents, and detecting genomic alterations that can lead to cancer. The new grants are funded as part of the National Human Genome Research Institute’s (NHGRI) Clinical Sequencing Exploratory Research (CSER) program. NHGRI is part of NIH.

The new grants expand on the initial CSER program awards given to six research teams in December 2011. The current funding includes approximately $5 million from the National Cancer Institute, also part of NIH.

“Since the first round of CSER program awards were announced in 2011, the use of clinical genome sequencing has seen tremendous growth,” said Bradley Ozenberger, Ph.D., CSER program director and deputy director of the Division of Genomic Medicine at NHGRI. “Genome sequencing has vast potential to uncover new targets for therapy. We’re continuing to learn how best to use genome sequence data to understand disease susceptibility and causation, and to advance treatment.”

The use of clinical genome sequencing has increased due to the advent of more efficient methods for DNA sequencing, but many obstacles remain to its routine use. Some physicians typically lack experience and education in the use of genomic information, said Dr. Ozenberger. At the same time, some patients don’t fully understand what genomic information can tell them. Many people may be reluctant to find out what information resides in their genome, he said.

“It’s not enough to understand the scientific issues related to the medical applications of genomics. Researchers must also examine how best to discuss genome sequencing results and their potential implications with doctors, patients and caregivers,” said Jean McEwen, J.D., Ph.D., program director for the Ethical, Legal and Social Implications program in the Division of Genomics and Society at NHGRI.

The new CSER program grants are awarded to the following groups:

•    Kaiser Foundation Research Institute, Portland, Ore., $8.1 million (pending available funds)

Principal Investigators: Katrina Goddard, Ph.D., and Benjamin Wilfond, M.D., Seattle Children’s Research Institute

Drs. Goddard and Wilfond will lead a project that examines the use of whole-genome sequencing in informing couples, before they conceive a child, about their potential carrier status for genetic disease. They will compare women and their partners who receive preconception genetic testing to those who receive whole-genome sequencing in addition to the testing. Scientists will look for genetic mutations for about 100 rare conditions and expect to enroll 380 people in the trial. Couples with mutations that put children at risk for a condition will work with a genetic counselor and complete surveys to help researchers develop useful approaches to presenting information to patients.

•    Hudson-Alpha Institute for Biotechnology, Huntsville, Ala., $7.66 million (pending available funds)

Principal Investigator: Richard Myers, Ph.D.

Dr. Myers and his colleagues will sequence the genomes of nearly 500 children with developmental delays and other disabilities, along with their parents, in the hopes of discovering genomic alterations behind such disorders. As many as 1 to 3 percent of children worldwide are born with genetic disorders that lead to developmental or intellectual delays or disabilities. The researchers hope to uncover gene alterations that are common to more than one condition and gain insights to whether certain mutations cause milder or more severe cases of some conditions. The scientists plan to provide information on genetic differences to study participants and families and use questionnaires and interviews to better understand the impact of genomic testing results on families.

•    University of Michigan, Ann Arbor, $7.97 million (pending available funds)

Principal Investigator: Arul Chinnaiyan, M.D., Ph.D.

Dr. Chinnaiyan and his team will sequence the genomes of tumors from 500 patients with advanced sarcoma or other rare cancers to discover new information about genomic alterations, with the goal of eventually customizing therapies. Few clinical trials have been conducted in most rare cancers, and scientists would like to know more about the genetic underpinnings of these diseases. Investigators also plan to evaluate the patient consent process, and the delivery and use of genome sequencing results.

•    University of Washington, Seattle, $3 million (pending available funds)

Principal Investigators: Gail Jarvik, M.D., Ph.D., Wylie Burke, M.D., Ph.D., Debbie Nickerson, Ph.D., Peter Tarczy-Hornoch, M.D.

Dr. Jarvik and her colleagues at the University of Washington will lead the coordinating center responsible for pulling together all of the scientific teams, helping to organize studies, interpreting study results and helping groups focus on common goals. The coordinating center team members bring their own expertise in clinical genetics, genome sequencing, bioinformatics and ethics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wednesday, September 28, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!