Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Salk Scientists Discover more Versatile Approach to Creating Stem Cells

Published: Wednesday, July 24, 2013
Last Updated: Wednesday, July 24, 2013
Bookmark and Share
New method should hasten promise of regenerative medicine.

Stem cells are key to the promise of regenerative medicine: the repair or replacement of injured tissues with custom grown substitutes. Essential to this process are induced pluripotent stem cells (iPSCs), which can be created from a patient's own tissues, thus eliminating the risk of immune rejection. However, Shinya Yamanaka's formula for iPSCs, for which he was awarded last year's Nobel Prize, uses a strict recipe that allows for limited variations in human cells, restricting their full potential for clinical application.

Now, in this week's issue of Cell Stem Cell, the Salk Institute's Juan Carlos Izpisua Belmonte and his colleagues show that the recipe for iPSCs is far more versatile than originally thought. For the first time, they have replaced a gene once thought impossible to substitute, creating the potential for more flexible recipes that should speed the adoption of stem cells therapies.

Stem cells come in two types: embryonic stem cells (ESCs), which are immature cells that have never differentiated into specific cell types, and induced pluripotent stem cells, which are mature cells that have been reprogrammed back into an undifferentiated state. After the initial discovery in 2006 by Yamanaka that introducing four different genes into a mature cell could suffice for reprogramming the cell to pluripotency, most researchers adopted his recipe.

Izpisua Belmonte and his colleagues took a fresh approach and discovered that pluripotency (the stem cell's ability to differentiate into nearly any kind of adult cell) can also be accomplished by balancing the genes required for differentiation. These genes code for "lineage transcription factors," proteins that start a stem cell down the path to differentiate first into a particular cell lineage, or type, such as a blood cell versus a skin cell, and then finally into a specific cell, such as a white blood cell.

"Prior to this series of experiments, most researchers in the field started from the premise that they were trying to impose an 'embryonic-like' state on mature cells," says Izpisua Belmonte, who holds the Institute's Roger Guillemin Chair. "Accordingly, major efforts had focused on the identification of factors that are typical of naturally occurring embryonic stem cells, which would allow or further enhance reprogramming."

Despite these efforts, there seemed to be no way to determine through genetic identity alone that cells were pluripotent. Instead, pluripotency was routinely evaluated by functional assays. In other words, if it acts like a stem cell, it must be a stem cell.

That condition led the team to their key insight. "Pluripotency does not seem to represent a discrete cellular entity but rather a functional state elicited by a balance between opposite differentiation forces," says Izpisua Belmonte.

Once they understood this, they realized the four extra genes weren't necessary for pluripotency. Instead, it could be achieved by altering the balance of "lineage specifiers," genes that were already in the cell that specified what type of adult tissue a cell might become.

"One of the implications of our findings is that stem cell identity is actually not fixed but rather an equilibrium that can be achieved by multiple different combinations of factors that are not necessarily typical of ESCs," says Ignacio Sancho-Martinez, one of the first authors of the paper and a postdoctoral researcher in Izpisua Belmonte's laboratory.

The group was able to show that more than seven additional genes can facilitate reprogramming to iPSCs. Most importantly, for the first time in human cells, they were able to replace a gene from the original recipe called Oct4, which had been replaced in mouse cells, but was still thought indispensable for the reprogramming of human cells. Their ability to replace it, as well as SOX2, another gene once thought essential that had never been replaced in combination with Oct4, demonstrated that stem cell development must be viewed in an entirely new way.

"It was generally assumed that development led to cell/tissue specification by 'opening' certain differentiation doors," says Emmanuel Nivet, a post-doctoral researcher in Izpisua Belmonte's laboratory and co-first author of the paper, along with Sancho-Martinez and Nuria Montserrat of the Center for Regenerative Medicine in Barcelona, Spain.

Instead, the successful substitution of both Oct4 and SOX2 shows the opposite. "Pluripotency is like a room with all doors open, in which differentiation is accomplished by 'closing' doors," Nivet says. "Inversely, reprogramming to pluripotency is accomplished by opening doors."

The team believes their work should help to overcome one of the major hurdles to the widespread adoption of stem cell therapies: the original four genes used to reprogram stem cells had been implicated in cancer. "Recent studies in cancer, many of them done by my Salk colleagues, have shown molecular similarities between the proliferation of stem cells and cancer cells, so it is not surprising that oncogenes [genes linked to cancer] would be part of the iPSC recipe," says Izpisua Belmonte.

With this new method, which allows for a customized recipe, the team hopes to push therapeutic research forward. "Since we have shown that it is possible to replace genes thought essential for reprogramming with several different genes that have not been previously involved in tumorigenesis, it is our hope that this study will enable iPSC research to more quickly translate into the clinic," says Izpisua Belmonte.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenetic Variations Between Tissues
A Salk Institute-led team has generated a map of the human methylome, gaining insight into patterns of DNA methylation of various tissues.
Wednesday, June 03, 2015
New Stem Cell May Overcome Hurdles for Regenerative Medicine
Scientists have discovered a novel type of pluripotent stem cell capable of developing into any type of tissue whose identity is tied to their location in a developing embryo.
Monday, May 11, 2015
Vital Step in Stem Cell Growth Revealed
Salk scientists' finding could aid regenerative and cancer therapies.
Thursday, May 07, 2015
Gene-Editing Technique Offers Hope For Hereditary Diseases
Salk scientists use molecular "scissors" to eliminate mitochondrial mutations in eggs and embryos.
Monday, April 27, 2015
Cellular Scissors Chop up HIV Virus
Salk scientists re-engineered the bacterial defense system CRISPR to recognize HIV inside human cells and destroy the virus, offering a potential new therapy.
Thursday, March 12, 2015
Powerful Method To Speed Cancer Drug Discovery Unveiled
The new method lets researchers identify weak and previously undetectable interactions between proteins inside living cells.
Monday, November 24, 2014
Salk Scientists Discover a Key to Mending Broken Hearts
Researchers regenerate and heal mouse hearts by using the molecular machinery the animals had all along.
Wednesday, November 12, 2014
Turning Human Skin Cells Into Immune-Fighting White Blood Cells
The fast and safe technique developed at the Salk Institute circumvents problems that have hindered regenerative medicine.
Friday, September 12, 2014
No Extra Mutations in Modified Stem Cells, Study Finds
New results ease previous concerns that gene-editing techniques-used to develop therapies for genetic diseases-could add unwanted mutations to stem cells.
Saturday, July 12, 2014
Salk Institute Receives $3M Gift for Ageing Research
The gift from the Glenn Foundation for Medical Research will allow the Institute to continue conducting research to understand the biology of normal human aging and age-related diseases.
Friday, May 23, 2014
Circadian Clock Gene Linked to Eating Schedule
Research from the Salk Institute has shown that mutations in the circadian genes could drive night eating syndrome.
Friday, May 23, 2014
New Stem Cell Research Points to Early Indicators of Schizophrenia
Salk scientists show fundamental differences in early neurons from patients with schizophrenia, supporting the theory that risk for the disease may begin in the womb.
Wednesday, May 14, 2014
Salk Institute and Stanford Lead New $40M Stem Cell Genomics Center
Collaborative research center will bridge genomics and stem cell projects to find new therapies.
Sunday, February 02, 2014
Salk Researchers Identify Potential Biomarker for Cancer Diagnosis
Findings of disrupted micronuclei may prove to be a valuable tool for detecting cancer.
Friday, July 12, 2013
Researchers Chart Epigenomics of Stem Cells That Mimic Early Human Development
Collaborative study will help overcome hurdles to using stem cells to treat diseases and injuries.
Friday, May 10, 2013
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!