Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

“Bacterial raincoat” Found to Protect Bacteria from the Environment

Published: Monday, July 29, 2013
Last Updated: Monday, July 29, 2013
Bookmark and Share
Research led by scientists at the University of Dundee has uncovered the workings of a “bacterial raincoat” that helps to protect bacteria from the changing environment in which they live.

Many bacteria grow in large communities called biofilms, where the cells work together and produce a sticky matrix that holds the cells together and provides protection from environmental threats. The team have shown how a bacterium called Bacillus, commonly found in soil, protects itself by forming a water repellent coat. They found that the process is due to a protein produced by the bacterium called BslA. This protein spontaneously assembles to form a water repellent coat, protecting the Bacillus cells underneath. 

As Bacillus subtilis is currently being examined to assess its suitability for use as a widespread bio-fertilizer, the discovery has the potential to aid the development of an ecologically sound method of protecting crops.

The findings of the team, led by Dr Nicola Stanley-Wall and Professor Daan van Aalten from the College of Life Sciences at Dundee, alongside their colleague Professor Cait MacPhee, from the University of Edinburgh, are published today in the journal Proceedings of the National Academy of Sciences.

“We have determined the structure of the BslA protein, and used the information gained from it to identify the important parts of the protein that are responsible for making the biofilm coat water repellent,” explained Dr Stanley-Wall.

“What we have shown is that this protein is very unusual in its ability to repel water from the environment whilst keeping the bacteria inside the biofilm in optimal conditions. The more we understand how the raincoat assembles the more we can work to encourage this process and increase the effectiveness of Bacillus subtilis as an environmentally friendly alternative to chemical fertilizers.”

Bacteria are small, single-celled organisms, which play a variety of roles in nature. Although some types are linked to infection and disease, others are entirely benign and indeed are beneficial, such as those that live side-by side with plants and protect them from disease or those in the gut that are essential for the maintenance of human health.

Although the research centred upon the workings of a single bacterium, it may potentially help scientists to better understand how biofilms formed in the human body become resistant to antibiotics, according to Dr Stanley-Wall.

She continued, “There are possible implications for many different plants and even for human health as the principles guiding the research are the same. If we know how bacteria assemble into a bacterium assembles biofilm then we know how to disrupt it in the case of harmful, or to encourage the growth of good bacteria."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Breakthrough Flu Vaccine Inhibited by Pre-existing Antibodies
Universal truths – how existing antibodies are sabotaging the most promising new human flu vaccines.
Researchers Develop Software That Could Facilitate Drug Development
AptaTRACE can identify aptamers, potentially speed drug advancement.
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
New Medication Shows Promise Against Liver Fibrosis in Animal Studies
Liver fibrosis is a gradual scarring of the liver that puts people at risk for progressive liver disease and liver failure.
Raw Eggs Deemed Safe to Eat
A report published today by the Advisory Committee on the Microbiological Safety of Food (ACMSF) into egg safety has shown a major reduction in the risk from salmonella in UK eggs.
Monitoring TTX Toxin in Shellfish
In a number of small studies, mussels and oysters from the eastern and northern part of the Oosterschelde in Holland were found to contain tetrodotoxin (TTX).
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
NIH Begins Yellow Fever Vaccine Trial
NIH has initiated an early-stage clinical trial of a vaccine to protect against yellow fever.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!